Dileptons at low energies: Prospects

and challenges

CPOD 2017 Stony Brook University, August 7-11, 2017

Itzhak Tserruya

Motivation

What did we learn from almost 25 years of dilepton measurements at SPS and RHIC

Prospects and challenges at low energies
 Summary

Motivation

Dileptons (e⁺e⁻, µ⁺µ⁻) are sensitive probes of the two fundamental properties of the QGP:

- > Deconfinement
- Chiral Symmetry Restoration

 <u>Thermal radiation</u> emitted in the form of real photons or virtual photons (dileptons) provides a direct fingerprint of the matter formed (QGP and HG) and a measurement of its temperature.

QGP:
$$q\overline{q} \longrightarrow \gamma^* \longrightarrow l^+l^-$$

$$\mathsf{HG:} \quad \pi^+\pi^- \longrightarrow \rho \longrightarrow \gamma^* \longrightarrow I^+I^-$$

NA60 Acceptance corrected invariant mass spectrum

NA60 dimuon excess corrected for acceptance in m - p_T

Rapp and Hees PLB 753, 586 (2016) NA60 data: Eur. Phys. J. C 59 (2009) 607

LOW MASSES (m < 1 GeV/c²) SPS: CERES, NA60 RHIC: PHENIX, STAR

Itzhak Tserruya

CPOD 2017, SBU, August 7-11, 2017

First CERES result PRL 75, 1272 (1995)

(renowned paper: 579 citations)

Eur. Phys J. C41, 475 (2005) Itzhak Tserruya

10

PRL 91, 042301 (2003)

<dN_{ee}/dm_{ee}>/<N_{ch}>(100 MeV/c²)⁻¹ $(d^2N_{ee}/d\eta dm)$ / $(dN_{ch}/d\eta)$ (100 MeV/c²)⁻¹ CERES/NA45 Pb-Au 158 A GeV CERES/NA45 S-Au 200 GeV/u $\sigma_{trid} \sigma_{tot} \approx 7 \%$ 10 2.1 < n < 2.65p.>200 MeV/c p, > 200 MeV/c ⊖_{aa}>35 mrad $\Theta_{ee} > 35 \text{ mrad}$ 10-5 $\langle dN_{ch}/d\eta \rangle = 125$ 2.1<n<2.65 10 First CERES result Last CERES result (a) PRL 75, 1272 (1995) PLB 666, 425 (2008) 10⁻⁶ 10 (renowned paper: 579 citations) 10 10 charm 10-10 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1 m_{ee} (GeV/c²) m_ (GeV/c²) 10 Pb-Au 158 AGeV σ/σ_{geo}≈ 28% CERES/NA45 Pb-Au 40 AGeV <dN_{ee}/dm_{ee}>/<N_{ch}> (100 MeV/c²)⁻¹ $<dN_{ee}/dm_{ee}>/<N_{ch}>$ (100 MeV/c²)⁻¹ $<dN_{ch}/d\eta>=245$ σ/σ_{αeo}≈ 30 % 10-5 2.1<η<2.65 <dN_{ch}/dη>=210 combined 95/96 data 10 p,>0.2 GeV/c 2.1<η<2.65 p,>200 MeV/c Θ_{oo} >35 mrad ⊖_∞>35 mrad 10 "een 10 eev 10-7 €ee ee à ee. 10 10-8 10 0 0 0.2 0.6 0.8 1.2 1.4 1.6 0.2 0.4 0.6 0.8 1 1.2 0.4 m_{ee} (GeV/c²) m_{ee} (GeV/c²) Eur. Phys J. C41, 475 (2005) PRL 91, 042301 (2003) Itzhak Tserruya

S-Au 200 GeV/u

2.1 < n < 2.65

p, > 200 MeV/c

 $\langle dN_{ch}/d\eta \rangle = 125$

m_{ee} (GeV/c²)

 $\Theta_{ee} > 35 \text{ mrad}$

CERES/NA45

charm

10

10

10

10

<dN_{ee}/dm_{ee}>/<N_{ch}>(100 MeV/c²)⁻¹

10

10-6

10

10-

0 0.2 0.4

CERES/NA45

0.6 0.8

Pb-Au 158 A GeV

 $\sigma_{trid} \sigma_{tot} \approx 7 \%$

p>200 MeV/c

⊖_{aa}>35 mrad

2.1<n<2.65

(a)

1.2 1.4 1.6

1

 $(d^2N_{ee}/d\eta dm) / (dN_{ch}/d\eta) (100 \text{ MeV/c}^2)^{-1}$ (renowned paper: 579 citations)

First CERES result

PRL 75, 1272 (1995)

Eur. Phys J. C41, 475 (2005) Itzhak Tserruya

Strong enhancement of low-mass e⁺e⁻ pairs in all A-A systems studied

First evidence of thermal radiation from the HG $\pi^+\pi^- \longrightarrow \rho \longrightarrow \gamma^* \longrightarrow e^+e^-$

PRL 91, 042301 (2003)

Dropping Mass or Broadening (I) ?

* Interpretations invoke: $\pi^+\pi^- \rightarrow \rho \rightarrow \gamma^* \rightarrow e^+e^-$

thermal radiation from HG

 vacuum ρ not enough to reproduce data

CERES Pb-Au 158 A GeV 95/96 data

Dropping Mass or Broadening (I)?

* Interpretations invoke: $\pi^{+}\pi^{-} \rightarrow \rho \rightarrow \gamma^{*} \rightarrow e^{+}e^{-}$

thermal radiation from HG

vacuum p not enough to reproduce data

* in-medium modifications of ρ : \diamond broadening ρ spectral shape

(Rapp and Wambach)

(Brown et al)

Itzhak Tserruya

CERES Pb-Au 158 A GeV 95/96 data

Low-mass dileptons and in-medium p

NA60, PRL 96, 162302 (2006)

Excess shape in agreement with broadening of the ρ mainly due to the scattering of ρ off baryons (Rapp-Wambach)

Dropping mass of the ρ (Brown-Rho) ruled out

Confirmed by CERES results (PLB 666, (2008) 425) Melting of the ρ

Low-mass e⁺e⁻ Pairs: Prospects at RHIC

- At SPS energies, the ρ-meson broadening, that explains both the CERES and NA60 data, relies on the high baryon density.
- □ What was expected at RHIC?

	SPS (Pb-Pb)	RHIC (Au-Au)
dN(p) / dy	6.2	20.1
Produced baryons (p , p, n , n)	24.8	80.4
$p - \overline{p}$	33.5	8.6
Participants nucleons ($\overline{p} - p$)A/Z	<mark>85</mark>	21.4
Total baryon density	110	102

 Baryon density is almost the same at RHIC and SPS (the decrease in the participating nucleons transported to mid-rapidity is compensated by the copious production of nucleon-antinucleon pairs)

Strong enhancement of low-mass pairs predicted to persist at RHIC

PHENIX vs. STAR

Enhancement factor in 0.15<M_{ee}<0.75 Gev/c²

	Minimum Bias	Central collisions
PHENIX	4.7 ± 0.4 ± 1.5	$7.6 \pm 0.5 \pm 1.3$
STAR	$1.40 \pm 0.06 \pm 0.38$	$1.54 \pm 0.09 \pm 0.45$

Large quantitative differences

Last PHENIX results

PRC 93, 014904 (2016)

□ HBD upgrade:

- Improved hadron rejection: $30\% \rightarrow 5\%$
- Improved signal sensitivity

□ New improved analysis

- Neural network for e-id
- Flow modulation incorporated in the mixed event using an exact analytical method
- Absolutely normalized correlated BG

Minimum bias data/cocktail

0.3-0.76 (GeV/c²)	Data/cocktail ±stat ±syst ±model
PHENIX 2010	$2.3 \pm 0.4 \pm 0.4 \pm 0.2$ (Pythia) $1.7 \pm 0.3 \pm 0.3 \pm 0.2$ (MC@NLO)
STAR	$1.76 \pm 0.06 \pm 0.26 \pm 0.29$

Consistent results between PHENIX and STAR

Comparison to Rapp's model

Mass and p_T dependencies of excess well reproduced by Rapp's model

- In-medium ρ broadening due to the scattering of the ρ off baryons in the HG
- Significant contribution from the QGP at low masses

Centrality dependence consistent with $N_{part}^{1.45}$ as predicted by model.

STAR beam energy scan

Systematic study of the dielectron continuum at:

200, 62.4, 39, 27 and 19.6 GeV

Low mass excess observed at all energies

STAR beam energy scan

Systematic study of the dielectron continuum at:
200, 62.4, 39, 27 and 19.6 GeV

Low mass excess observed at all energies

 Rapp's model reproduces the excess at all energies.

invariant dielectron mass, Mee (GeV/c²)

STAR beam energy scan

Connection with CSR?

- In-medium broadening of the ρ meson (mainly by scattering off baryons) explains the dilepton excess in the LMR – The ρ meson "melts" in the high density medium.
- Is this connected to CSR? The measurement of the chiral partner a₁ is very difficult
- Recent calculations by Hohler and Rapp (PLB 731 (2014) 103) show that ρ and a₁ become degenerate at high temperatures: the ρ broadens as T increases, whereas a₁ mass drops and the spectral shapes of ρ and a₁ coincide at high T.

20

Intermediate masses (m = 1-3 GeV/c²) SPS: NA60 RHIC: PHENIX and STAR

Itzhak Tserruya

CPOD 2017, SBU, August 7-11, 2017

Origin of the IMR Excess

NA60, PRL 96, 162302 (2006)

Origin of the IMR Excess

NA60, PRL 96, 162302 (2006)

Renk/Ruppert, PRL 100,162301 (2008)

Dominant process in mass region $m > 1 \text{ GeV/c}^2$:

qq annihilation – thermal radiation from the QGP

Itzhak Tserruya

CPOD 2017, SBU, August 7-11, 2017

Last PHENIX results

PRC 93, 014904 (2016)

□ HBD upgrade:

- Improved hadron rejection: $30\% \rightarrow 5\%$
- Improved signal sensitivity

□ New improved analysis

- Neural network for e-id
- Flow modulation incorporated in the mixed event using an exact analytical method
- Absolutely normalized correlated BG

Minimum bias data/cocktail

0.3-0.76 (GeV/c²)	Data/cocktail ±stat ±syst ±model
PHENIX 2010	$2.3 \pm 0.4 \pm 0.4 \pm 0.2$ (Pythia) $1.7 \pm 0.3 \pm 0.3 \pm 0.2$ (MC@NLO)
STAR	$1.76 \pm 0.06 \pm 0.26 \pm 0.29$

PHENIX and STAR results are now consistent

CPOD 2017, SBU, August 7-11, 2017

<u>cc in cocktail</u>

PHENIX, PRC 93, 014904 (2016)

Cross section derived using IMR in d+Au collisions and extrapolating to m~0
 → uncertainty in cross section

PHENIX, PRC 91, 014907 (2015)

	d $\sigma^{pp}_{c\overline{c}}$ /dy (µb)
PYTHIA	$106 \pm 9^{stat} \pm 33^{syst}$
MC@NLO	$287 \pm 29^{stat} \pm 100^{syst}$

Hadronic decays of D mesons
 STAR, PRL 113, 22301 (2014)
 dσ/dy = 171 ± 26 μb (PYTHIA)

<u>cc in cocktail</u>

PHENIX, PRC 93, 014904 (2016)

Cross section derived using IMR in d+Au collisions and extrapolating to m~0
 → uncertainty in cross section

PHENIX, PRC 91, 014907 (2015)

	d $\sigma^{pp}_{c\overline{c}}$ /dy (µb)
PYTHIA	$106 \pm 9^{stat} \pm 33^{syst}$
MC@NLO	$287 \pm 29^{stat} \pm 100^{syst}$

Hadronic decays of D mesons
 STAR, PRL 113, 22301 (2014)
 dσ/dy = 171 ± 26 μb (PYTHIA)

- ➤ c quarks suffer energy loss in the medium → effect on the cc correlation?
- Lack of appropriate modeling of cc correlation
 - \rightarrow uncertainty in shape

NA60 Acceptance corrected invariant mass spectrum

NA60 dimuon excess corrected for acceptance in m - p_T

Rapp and Hees PLB 753, 586 (2016) NA60 data: Eur. Phys. J. C 59 (2009) 607

STAR PRC 90, 64904 (2014)

Inclusive dielectron v₂ consistent with simulated v₂ from cocktail sources

STAR PRC 90, 64904 (2014)

Challenge: isolate the v₂ of the excess dileptons

Inclusive dielectron v₂ consistent with simulated v₂ from cocktail sources

Lower – energies:

BM@N at Nuclotron CBM at FAIR HADES at GSI MPD at NICA NA60+ at SPS ? STAR – BES-II at RHIC

Itzhak Tserruya

CPOD 2017, SBU, August 7-11, 2017

Matter at low energy collisions

Rapp, Wambach, Adv.Nucl.Phys. 25, 1 (2000)

Baryon dominated matterVery low pion density

Evolution of average ρ_{B}

- \Box Sizable densities 3-6 ρ_0
- □ Long lifetime

Matter at low energy collisions

Rapp, Wambach, Adv.Nucl.Phys. 25, 1 (2000)

Evolution of average $\rho_{\rm B}$

Study dileptons under highest baryon density

- Unveil onset of excess?
- Critical point? First order phase transition?

T (MeV)

- Baryon dominated matter
- Very low pion density

- \Box Sizable densities 3-6 ρ_0
- □ Long lifetime

IMR as thermometer

Rapp and Hees, PLB 753, 586 (2016)

T given by inverse slope of the acceptance corrected mass spectrum in the IMR.

IMR as thermometer

and LMR as chronometer

Rapp and Hees, PLB 753, 586 (2016)

T given by inverse slope of the acceptance corrected mass spectrum in the IMR.

The thermal radiation integrated in the LMR m = 0.3 - 0.7 GeV/c² tracks the fireball lifetime quite well

Thermal yields at low energies

R. Rapp – private communication

 Cross sections decrease by almost two orders of magnitude between central Au+Au at 200 GeV and central Pb+Pb at 6.3 GeV at m=2 GeV/c²
 Challenging measurements

Charm cross section in pp

Cross sections down by ~3 orders of magnitude between RHIC and NICA energies.

Itzhak Tserruya

CPOD 2017, SBU, August 7-11, 2017

Dilepton experiments – energy map

Comparison to other facilities

39

MPD detector at NICA

- □ 9 m long 6 m diameter
- □ Low material budget
- Tracking (TPC):
 up to |η|<2, 2π in azimuth
- PID (TOF, TPC, ECAL): hadrons, e, γ

MPD detector at NICA

Estimate of dilepton yield in central Au+Au at $m = 2 - 2.5 \text{ GeV/c}^2$ $\sqrt{s_{NN}} = 8 \text{ GeV}$ 410 pairs/10 d

BM@I

- □ All systems at all energies studied show an enhancement of dileptons.
- □ A single model consistently reproduces the observed enhancement.
- The thermal radiation from the QGP dominates the dilepton excess in the IMR. Provides a measurement of the average temperature of the medium in the QGP phase.
- The thermal radiation from the HG dominates the dilepton excess in the LMR. Seems to track the medium lifetime.
- **□** Emerging picture for the realization of CSR: the ρ meson broadens in the medium, the a_1 mass drops and becomes degenerate with the ρ.
- □ Missing:
 - ✤ precise measurements of IMR at RHIC energies.
 - \bullet v₂ measurements of the excess dileptons.
- Clear predictions and strong experimental program to study dileptons at low energies.