
C. Schmidt           CPOD’17, Stony Brook, NY 1

Cumulant ratios of net-baryon number 
fluctuations at small values of the 

baryon chemical potential

C.Schmidt

BNL-Bi-CCNU Collaboration: 
A. Bazavov, H.-T. Ding, P. Hegde, O. Kaczmarek, F. Karsch, E. Laermann, 
S. Mukherjee, H. Ohno, P. Petreczky, H. Sandmeyer, C. Schmidt, 
S. Sharma, W. Soeldner, P. Steinbrecher



C. Schmidt           CPOD’17, Stony Brook, NY 2

Motivation
• Understand and calculate QCD equilibrium thermodynamic quantities at nonzero 

temperature and baryon number densities from first principles

�! can we understand 
the BES results of 
conserved charge 
fluctuations?

�! is there evidence for 
a QCD critical point?

�! what is the validity 
range of the HRG 
model?

 [NSAC 2015 Long Range Plan for Nuclear Physics]

http://www.science.energy.gov/~/media/np/nsac/pdf/2015LRP/2015_LRPNS_091815.pdf
http://www.science.energy.gov/~/media/np/nsac/pdf/2015LRP/2015_LRPNS_091815.pdf
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Plan

• Formulation of the method and status of 
ongoing calculations

• Freeze-out and lines of constant physics

• The radius of convergence and the QCD 
critical point

• Skewness and kurtosis of the net-proton 
number fluctuations at freeze-out

The whole discussion and all results are based on Taylor expansion coefficients of 
the pressure of QCD, obtained at vanishing chemical potentials:

X. Luo, CPOD’14

p
sNN GeV

[X. Luo, CPOD’14]
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Taylor expansion in           (methodology) 
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Calculate all Taylor expansions coefficients of the QCD grand canonical partition 
function in terms of three chemical potential (µB, µQ, µS) up to a given order

! flexible framework, study • strangeness neutral matter (heavy ions)
• strangeness rich matter (quark starts?)
• electrically charged matter
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Taylor expansion in           (status) 
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Figure 2. The leading order (O(µ2
B)) correction to the pressure calculated at zero baryon chemical potential. The left hand

figure shows the leading order correction in a large temperature range. The right hand part of the figure shows an enlarged view
into the low temperature region. In addition to the continuum extrapolation of the lattice QCD results we also show results
from HRG model calculations based on all hadron resonances listed by the particle data group (PDG-HRG) and obtained in
quark model calculations (QM-PDG).

IV. EQUATION OF STATE FOR µQ = µS = 0

Let us first discuss the Taylor expansion for bulk thermodynamic observables in the case of vanishing electric charge
and strangeness chemical potentials. This greatly simplifies the discussion and yet incorporates all the features of the
more general case. Also the discussion of truncation errors presented in this section carries over to the more general
situation.

A. Pressure and net baryon-number density

For µQ = µS = 0 the Taylor expansion coe�cients P
2n and NB

2n�1

, introduced in Eqs. 15 and 16, are simply related
by
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The series for the pressure and net baryon-number density simplify to,
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In Eqs. 26 and 27 we have factored out the leading order (LO) µB-dependent part in the series for the pressure as
well as the net baryon-number density. This helps to develop a feeling for the importance of higher order contributions
and, in particular, the approach to the HRG limit at low temperatures. Note that all ratios �B

2n/�
B
2

are unity in a
HRG and, in the infinite temperature, ideal quark gas limit, �B

4

/�B
2

= 2/(3⇡2) ' 0.068 is the only non-vanishing
higher order expansion coe�cient. From Eqs. 26 and 27 it is evident that contributions from higher order expansion
coe�cients become more important in the number density than in the pressure. Relative to the LO result, the
contributions of the NLO and NNLO expansion coe�cients for nB/T 3 are a factor two and three larger respectively
than for the corresponding expansion coe�cients in the pressure series.

We show the leading order coe�cient �B
2

(T ) in Fig. 2 and the NLO (�B
4

) and NNLO (�B
6

) coe�cients divided by
�B
2

(T ) in Fig. 3. The left hand part of Fig. 2 shows the leading order contribution �B
2

in the entire temperature
interval used in the current analysis. For the LO expansion coe�cients we also used data from simulations on 483⇥12
lattices. Here we used existing data for ml/ms = 1/20 [3] and generated new ensembles for ml/ms = 1/27 at nine

[BNL-Bi-CCNU, PRD 95 (2017), 054504]

similar results obtained by Budapest-Wuppertal
[Gunter et al., EPJ Web Conf 137 (2017) 07008]
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Figure 3. Left: The ratio of fourth and second order cumulants of net-baryon number fluctuations (�B
4 /�

B
2 ) versus temperature.

Right: same as the left hand side, but for the ratio of sixth and second order cumulants of net-baryon number fluctuations
(�B

6 /�
B
2 ). The boxes indicate the transition region, Tc = (154± 9) MeV. Grey bands show continuum estimate.

temperature values below T = 175 MeV. Furthermore, we used data on 643 ⇥ 16 lattices at a corresponding set of
low temperature values. These data are taken from an ongoing calculation of higher order susceptibilities performed
by the HotQCD Collaboration2. This allowed us to update the continuum extrapolation for �B

2

given in [20]. The
new continuum extrapolation shown in Fig. 2 is consistent with our earlier results, but has significantly smaller errors
in the low temperature region. In the right hand part of this figure we compare the continuum extrapolated lattice
QCD data for �B

2

with HRG model calculations. It is obvious that the continuum extrapolated QCD results overshoot
results obtained from a conventional, non-interacting HRG model calculations with resonances taken from the particle
data tables (PDG-HRG) and treated as point-like excitations. We therefore compare the QCD results also with a
HRG model that includes additional strange baryons,which are not listed in the PDG but are predicted in quark
models and lattice QCD calculations. We successfully used such an extended HRG model (QM-HRG) in previous
calculations [5, 6]. As can be seen in Fig. 2 (left), continuum extrapolated results for �B

2

agree well with QM-HRG
calculations.

As can be seen in the left hand part of Fig. 3, the ratio �B
4

/�B
2

approaches unity with decreasing temperature, but is
small at high temperatures where the leading order correction is large. The relative contribution of the NLO correction
thus is largest in the hadronic phase, where �B

4

/�B
2

' 1. For temperatures T<⇠155 MeV we find �B
4

/�B
2

 0.8. The
relative contribution of the NLO correction to the µB-dependent part of the pressure (number density) in the crossover
region and below thus is about 8% (16%) at µB/T = 1 and rises to about 33% (66%) at µB/T = 2. At temperatures
larger than 180 MeV the relative contribution of the NLO correction to pressure and number density at µB/T = 2 is
less than 8% and 16%, respectively.

The relative contribution of the O(µ̂6

B) correction, �
B
6

/�B
2

, is shown in the right hand part of Fig. 3. The ideal gas
limit for this ratio vanishes. Obviously the ratio is already small for all temperatures T > 180 MeV, i.e. �B

6

/�B
2

 0.5.
Consequently, for µ̂B = 2 the correction to the leading order result is less than 2.2% for the µB-dependent part of
the pressure and less than 7% for the net baryon-number density. At lower temperatures the statistical errors on
current results for �B

6

/�B
2

are still large. However, a crude estimate for the magnitude of this ratio at all temperatures
larger than 130 MeV suggests,

���B
6

/�B
2

��  3. In the low temperature, hadronic regime and for µ̂B = 2 the O(µ̂6

B)
corrections to the µB-dependent part of the pressure can be about 13%. However, in the total pressure, which also
receives large contributions from the meson sector, this will result only in an error of less than 3%. In the calculation
of the net baryon-number density, on the other hand, the current uncertainty on O(µ̂6

B) expansion coe�cients results
in errors of about 40% at temperatures below T ' 155 MeV. In fact, as discussed already in section II, higher order
corrections are larger in the Taylor expansion of the number density. From Eq. 25 it follows for the ratio of NLO
and LO expansion coe�cients, NB

5

/NB
1

= 3P
6

/P
2

. Clearly better statistics is needed in the low temperature range
to control higher order corrections to nB/T 3.

In Fig. 4 we show results for the µB-dependent part of the pressure (left) and the net baryon-number density (right)
calculated from Taylor series up to and including LO, NLO and NNLO contributions, respectively. This suggests that

2 We thank the HotQCD Collaboration for providing access to the second order quark number susceptibilities.
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Figure 3. Left: The ratio of fourth and second order cumulants of net-baryon number fluctuations (�B
4 /�

B
2 ) versus temperature.

Right: same as the left hand side, but for the ratio of sixth and second order cumulants of net-baryon number fluctuations
(�B

6 /�
B
2 ). The boxes indicate the transition region, Tc = (154± 9) MeV. Grey bands show continuum estimate.

temperature values below T = 175 MeV. Furthermore, we used data on 643 ⇥ 16 lattices at a corresponding set of
low temperature values. These data are taken from an ongoing calculation of higher order susceptibilities performed
by the HotQCD Collaboration2. This allowed us to update the continuum extrapolation for �B

2

given in [20]. The
new continuum extrapolation shown in Fig. 2 is consistent with our earlier results, but has significantly smaller errors
in the low temperature region. In the right hand part of this figure we compare the continuum extrapolated lattice
QCD data for �B

2

with HRG model calculations. It is obvious that the continuum extrapolated QCD results overshoot
results obtained from a conventional, non-interacting HRG model calculations with resonances taken from the particle
data tables (PDG-HRG) and treated as point-like excitations. We therefore compare the QCD results also with a
HRG model that includes additional strange baryons,which are not listed in the PDG but are predicted in quark
models and lattice QCD calculations. We successfully used such an extended HRG model (QM-HRG) in previous
calculations [5, 6]. As can be seen in Fig. 2 (left), continuum extrapolated results for �B

2

agree well with QM-HRG
calculations.

As can be seen in the left hand part of Fig. 3, the ratio �B
4

/�B
2

approaches unity with decreasing temperature, but is
small at high temperatures where the leading order correction is large. The relative contribution of the NLO correction
thus is largest in the hadronic phase, where �B

4

/�B
2

' 1. For temperatures T<⇠155 MeV we find �B
4

/�B
2

 0.8. The
relative contribution of the NLO correction to the µB-dependent part of the pressure (number density) in the crossover
region and below thus is about 8% (16%) at µB/T = 1 and rises to about 33% (66%) at µB/T = 2. At temperatures
larger than 180 MeV the relative contribution of the NLO correction to pressure and number density at µB/T = 2 is
less than 8% and 16%, respectively.

The relative contribution of the O(µ̂6

B) correction, �
B
6

/�B
2

, is shown in the right hand part of Fig. 3. The ideal gas
limit for this ratio vanishes. Obviously the ratio is already small for all temperatures T > 180 MeV, i.e. �B

6

/�B
2

 0.5.
Consequently, for µ̂B = 2 the correction to the leading order result is less than 2.2% for the µB-dependent part of
the pressure and less than 7% for the net baryon-number density. At lower temperatures the statistical errors on
current results for �B

6

/�B
2

are still large. However, a crude estimate for the magnitude of this ratio at all temperatures
larger than 130 MeV suggests,

���B
6

/�B
2

��  3. In the low temperature, hadronic regime and for µ̂B = 2 the O(µ̂6

B)
corrections to the µB-dependent part of the pressure can be about 13%. However, in the total pressure, which also
receives large contributions from the meson sector, this will result only in an error of less than 3%. In the calculation
of the net baryon-number density, on the other hand, the current uncertainty on O(µ̂6

B) expansion coe�cients results
in errors of about 40% at temperatures below T ' 155 MeV. In fact, as discussed already in section II, higher order
corrections are larger in the Taylor expansion of the number density. From Eq. 25 it follows for the ratio of NLO
and LO expansion coe�cients, NB

5

/NB
1

= 3P
6

/P
2

. Clearly better statistics is needed in the low temperature range
to control higher order corrections to nB/T 3.

In Fig. 4 we show results for the µB-dependent part of the pressure (left) and the net baryon-number density (right)
calculated from Taylor series up to and including LO, NLO and NNLO contributions, respectively. This suggests that

2 We thank the HotQCD Collaboration for providing access to the second order quark number susceptibilities.
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Figure 16. Estimators for the radius of convergence of the Taylor series for net baryon-number fluctuations, �B
2 (T, µB), in the

case of vanishing electric charge and strangeness chemical potentials obtained on lattices with temporal extent N⌧ = 8. Shown
are lower bounds for the estimator r�4 obtained in this work (squares) and results for this estimator obtained from calculations
with an imaginary chemical potential (triangles) [15]. Also shown are estimates for the location of the critical point obtained
from calculations with unimproved staggered fermions using a reweighting technique [50] and Taylor expansions [51]. In both
cases results have been rescaled using Tc = 154 MeV.

susceptibility are again simply related to that of the pressure,

�B
2

(T, µB) =
1X

n=0

1

(2n)!
�B
2n+2

µ̂2n
B . (52)

From this one obtains estimators for the radius of convergence of the pressure and susceptibility series,

rP
2n =

����
(2n+ 2)(2n+ 1)�B

2n

�B
2n+2

����
1/2

, r�
2n =

����
2n(2n� 1)�B

2n

�B
2n+2

����
1/2

. (53)

Both estimators converge to the true radius of convergence in the limit n ! 1. In order for this to correspond to a
singularity at real values of µ̂B , all expansion coe�cients should asymptotically stay positive.

Obviously, the estimators rP
2n and r�

2n are proportional to each other, rP
2n =

p
(2n+ 2)(2n+ 1)/[2n(2n� 1)]r�

2n.
The di↵erence between these to estimators may be taken as a systematic error for any estimate of the radius of
convergence obtained from a truncated Taylor series. In the hadron resonance gas limit one finds for estimators
involving sixth order cumulants, rP

4

= 1.58r�
4

. In the following we restrict our discussion to an analysis of r�
2n, which

at finite n leads to the smaller estimator for the radius of convergence. This seems to be appropriate in the present
situation where we only can construct two independent estimators from ratios of three distinct susceptibilities. We
thus may hope to identify regions in the QCD phase diagram at small values of µ̂B which are unlikely locations for a
possible critical point.

An immediate consequence of the definitions given in Eq. 53 is that the ratios of generalized susceptibilities need
to grow asymptotically like |�B

n+2

/�B
n | ⇠ n2 in order to arrive in the limit n ! 1 at a finite value for the radius

of convergence. At least for large values of n one thus needs to find large deviations from the hadron resonance
gas results |�B

n+2

/�B
n |HRG = 1. As is obvious from the results presented in the previous sections, in particular

from Fig. 3, the analysis of up to sixth order Taylor expansion coe�cients does not provide any hints for such large
deviations. The ratio �B

4

/�B
2

turns out to be less than unity in the entire temperature range explored so far, i.e.
for T � 135 MeV or T/Tc > 0.87(6). Below the crossover temperature, T ⇠ 155 MeV, the sixth order expansion
coe�cients also are consistent with HRG model results. They still have large errors. However, using the upper value
of the error for �B

6

/�B
4

provides a lower limit for the value of the estimator r�
4

. For temperatures in the interval
135 MeV  T  155 MeV (or equivalently 0.87(5)  T/Tc  1) we currently obtain a lower limit on r�

4

from the
estimate �B

6

/�B
4

' �B
6

/�B
2

< 3. This converts into the bound r�
4

� 2, which is consistent with our observation that
the Taylor series of all thermodynamic observables discussed in the previous sections is well behaved up to µB = 2T .
A more detailed analysis, using the current errors on �B

6

/�B
4

at five temperature values below and in the crossover
region of the transition at µB = 0, is shown in Fig. 16. This shows that the bound arising from r�

4

is actually more
stringent at temperatures closer to Tc, where �

6

starts to become small and eventually tends to become negative.
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with an imaginary chemical potential (triangles) [15]. Also shown are estimates for the location of the critical point obtained
from calculations with unimproved staggered fermions using a reweighting technique [50] and Taylor expansions [51]. In both
cases results have been rescaled using Tc = 154 MeV.

susceptibility are again simply related to that of the pressure,

�B
2

(T, µB) =
1X

n=0

1

(2n)!
�B
2n+2

µ̂2n
B . (52)

From this one obtains estimators for the radius of convergence of the pressure and susceptibility series,

rP
2n =

����
(2n+ 2)(2n+ 1)�B

2n

�B
2n+2

����
1/2

, r�
2n =

����
2n(2n� 1)�B

2n

�B
2n+2

����
1/2

. (53)

Both estimators converge to the true radius of convergence in the limit n ! 1. In order for this to correspond to a
singularity at real values of µ̂B , all expansion coe�cients should asymptotically stay positive.

Obviously, the estimators rP
2n and r�

2n are proportional to each other, rP
2n =

p
(2n+ 2)(2n+ 1)/[2n(2n� 1)]r�

2n.
The di↵erence between these to estimators may be taken as a systematic error for any estimate of the radius of
convergence obtained from a truncated Taylor series. In the hadron resonance gas limit one finds for estimators
involving sixth order cumulants, rP

4

= 1.58r�
4

. In the following we restrict our discussion to an analysis of r�
2n, which

at finite n leads to the smaller estimator for the radius of convergence. This seems to be appropriate in the present
situation where we only can construct two independent estimators from ratios of three distinct susceptibilities. We
thus may hope to identify regions in the QCD phase diagram at small values of µ̂B which are unlikely locations for a
possible critical point.

An immediate consequence of the definitions given in Eq. 53 is that the ratios of generalized susceptibilities need
to grow asymptotically like |�B

n+2

/�B
n | ⇠ n2 in order to arrive in the limit n ! 1 at a finite value for the radius

of convergence. At least for large values of n one thus needs to find large deviations from the hadron resonance
gas results |�B

n+2

/�B
n |HRG = 1. As is obvious from the results presented in the previous sections, in particular

from Fig. 3, the analysis of up to sixth order Taylor expansion coe�cients does not provide any hints for such large
deviations. The ratio �B

4

/�B
2

turns out to be less than unity in the entire temperature range explored so far, i.e.
for T � 135 MeV or T/Tc > 0.87(6). Below the crossover temperature, T ⇠ 155 MeV, the sixth order expansion
coe�cients also are consistent with HRG model results. They still have large errors. However, using the upper value
of the error for �B

6

/�B
4

provides a lower limit for the value of the estimator r�
4

. For temperatures in the interval
135 MeV  T  155 MeV (or equivalently 0.87(5)  T/Tc  1) we currently obtain a lower limit on r�

4

from the
estimate �B

6

/�B
4

' �B
6

/�B
2

< 3. This converts into the bound r�
4

� 2, which is consistent with our observation that
the Taylor series of all thermodynamic observables discussed in the previous sections is well behaved up to µB = 2T .
A more detailed analysis, using the current errors on �B

6

/�B
4

at five temperature values below and in the crossover
region of the transition at µB = 0, is shown in Fig. 16. This shows that the bound arising from r�

4

is actually more
stringent at temperatures closer to Tc, where �

6

starts to become small and eventually tends to become negative.
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Figure 16. Estimators for the radius of convergence of the Taylor series for net baryon-number fluctuations, �B
2 (T, µB), in the

case of vanishing electric charge and strangeness chemical potentials obtained on lattices with temporal extent N⌧ = 8. Shown
are lower bounds for the estimator r�4 obtained in this work (squares) and results for this estimator obtained from calculations
with an imaginary chemical potential (triangles) [15]. Also shown are estimates for the location of the critical point obtained
from calculations with unimproved staggered fermions using a reweighting technique [50] and Taylor expansions [51]. In both
cases results have been rescaled using Tc = 154 MeV.

susceptibility are again simply related to that of the pressure,
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(T, µB) =
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n=0
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(2n)!
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µ̂2n
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From this one obtains estimators for the radius of convergence of the pressure and susceptibility series,
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(2n+ 2)(2n+ 1)�B

2n

�B
2n+2

����
1/2
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2n =
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Both estimators converge to the true radius of convergence in the limit n ! 1. In order for this to correspond to a
singularity at real values of µ̂B , all expansion coe�cients should asymptotically stay positive.

Obviously, the estimators rP
2n and r�

2n are proportional to each other, rP
2n =

p
(2n+ 2)(2n+ 1)/[2n(2n� 1)]r�

2n.
The di↵erence between these to estimators may be taken as a systematic error for any estimate of the radius of
convergence obtained from a truncated Taylor series. In the hadron resonance gas limit one finds for estimators
involving sixth order cumulants, rP

4

= 1.58r�
4

. In the following we restrict our discussion to an analysis of r�
2n, which

at finite n leads to the smaller estimator for the radius of convergence. This seems to be appropriate in the present
situation where we only can construct two independent estimators from ratios of three distinct susceptibilities. We
thus may hope to identify regions in the QCD phase diagram at small values of µ̂B which are unlikely locations for a
possible critical point.

An immediate consequence of the definitions given in Eq. 53 is that the ratios of generalized susceptibilities need
to grow asymptotically like |�B

n+2

/�B
n | ⇠ n2 in order to arrive in the limit n ! 1 at a finite value for the radius

of convergence. At least for large values of n one thus needs to find large deviations from the hadron resonance
gas results |�B

n+2

/�B
n |HRG = 1. As is obvious from the results presented in the previous sections, in particular

from Fig. 3, the analysis of up to sixth order Taylor expansion coe�cients does not provide any hints for such large
deviations. The ratio �B

4

/�B
2

turns out to be less than unity in the entire temperature range explored so far, i.e.
for T � 135 MeV or T/Tc > 0.87(6). Below the crossover temperature, T ⇠ 155 MeV, the sixth order expansion
coe�cients also are consistent with HRG model results. They still have large errors. However, using the upper value
of the error for �B

6

/�B
4

provides a lower limit for the value of the estimator r�
4

. For temperatures in the interval
135 MeV  T  155 MeV (or equivalently 0.87(5)  T/Tc  1) we currently obtain a lower limit on r�

4

from the
estimate �B

6

/�B
4

' �B
6

/�B
2

< 3. This converts into the bound r�
4

� 2, which is consistent with our observation that
the Taylor series of all thermodynamic observables discussed in the previous sections is well behaved up to µB = 2T .
A more detailed analysis, using the current errors on �B

6

/�B
4

at five temperature values below and in the crossover
region of the transition at µB = 0, is shown in Fig. 16. This shows that the bound arising from r�

4

is actually more
stringent at temperatures closer to Tc, where �

6

starts to become small and eventually tends to become negative.

possible definitions of estimators:

[BNL-Bi-CCNU, PRD 95 (2017), 054504]

Estimating the radius of convergence

true radius of convergence: 
⇢(T ) = lim

n!1
rP2n(T ) = lim

n!1
r�2n(T )

• the radius of convergence only corresponds to a critical point if all expansion 
coefficients are positive 

• HRG: all ratios                      are unity. �B
2n/�

B
2n+2

p(T, µB) � p(T, 0)

T 4
=

�B
2 (T )

2
µ̂2

B

 
1 +

1

12

�B
4 (T )

�B
2 (T )

µ̂2
B +

1

360

�B
6

�B
2

µ̂4
B + · · ·

!
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Estimating the radius of convergence

  

F. Karsch,   BEST meeting  2017 F. Karsch,   BEST meeting  2017 22

– – agreement between HRG and QCD will start to deteriorate for T>150 MeVagreement between HRG and QCD will start to deteriorate for T>150 MeV

– – net baryon-number fluctuations in QCD always smaller than in HRG fornet baryon-number fluctuations in QCD always smaller than in HRG for
      T>150 MeVT>150 MeV
      

for simplicity:

HRG vs. QCDHRG vs. QCD
net baryon-number fluctuations  net baryon-number fluctuations  

baryon number fluctuations as function of      : µ̂B

• agreement with HRG starts to deteriorate for T > 150 MeV 
• no evidence for enhanced net-baryon number fluctuations 

(for                   , T > 135 MeV) µB/T  2
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Adapting the expansion to the HIC case

µ̂B = µB/T

• strangeness neutrality: hNSi = 0

• isospin asymmetry: hNQi = r hNBi

Apply conditions as in the HIC fireball
r ⇡ 0.4
for Au-Au 
and Pb-Pb

expand in powers of 
solve for 

µB, µQ, µS

µQ, µS

LO NLO

pn

define strangeness neutral 
coefficients

�p

T 4
=

1

2
�B

2 µ̂2
B +

1

2
�Q

2 µ̂2
Q +

1

2
�S

2 µ̂
2
S + �BQ

11 µ̂Bµ̂Q + �BS
11 µ̂Bµ̂S + �QS

11 µ̂Qµ̂S + · · ·

=
1

2

⇣
�B

2 + �Q
2 q2

1 + �S
2 s

2
1 + 2�BQ

11 q1 + 2�BS
11 s1 + 2�QS

11 q1s1
⌘

| {z }
p2

µ̂2
B + · · ·

µQ(T, µB) = q1(T )µ̂B + q3(T )µ̂3
B + q5(T )µ̂5

B + · · ·
µS(T, µB) = s1(T )µ̂B + s3(T )µ̂3

B + s5(T )µ̂5
B + · · ·

NNLO
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F. Karsch,   BEST meeting  2017 F. Karsch,   BEST meeting  2017 18

Taylor expansion coefficientsTaylor expansion coefficients

fits from:    A. Bazavov et al.,
                    Phys. Rev. D 95 (2017) 054504

data are updated:   hotQCD 2017

13

  

F. Karsch,   BEST meeting  2017 F. Karsch,   BEST meeting  2017 18

Taylor expansion coefficientsTaylor expansion coefficients

fits from:    A. Bazavov et al.,
                    Phys. Rev. D 95 (2017) 054504

data are updated:   hotQCD 2017

The strangeness neutral coefficients (r=0.4)

• fits are from 
[Bazavov et al., PRD 95 (2017) 054504]

• data updated : hotQCD 2017

• P6 negative for                 MeVT & 150
T [MeV]

T [MeV] T [MeV]
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The equation of state for µB > 0

  

F. Karsch,   BEST meeting  2017 F. Karsch,   BEST meeting  2017 20

Equation of state of (2+1)-flavor QCD:Equation of state of (2+1)-flavor QCD:

The EoS is well controlled for
 or equivalently   

(10-30)% contribution to total 
pressure at  

• (20-30)% contribution to the total pressure at µB/T = 2

) The 6th-order EoS is well controlled for                   
or equivalently   

µB/T  2p
sNN � 19.6GeV

P (T, µB) � P (T, 0)

T 4
= P2(T )

✓
µB

T

◆2

+ P4(T )

✓
µB

T

◆4

+ P6(T )

✓
µB

T

◆6

+ · · ·
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Lines of “constant physics”

130

135

140

145

150

155

160

165

170

  0  50 100 150 200 250 300 350 400 450

 STAR
 ALICE
 Becattini et al.

T f
 (µ

B)
 [M

eV
]

lines of constant P
�
s

crossover lines
130

135

140

145

150

155

160

165

170

  0  50 100 150 200 250 300 350 400 450

µB [MeV]

Tf(µB) = T0

 
1 � f

2

✓
µB

T0

◆2

� f
4

✓
µB

T

◆4
!

• assume parametrization of line of constant observable   , with                     , 
i.e. pressure, energy density or entropy.     is even function of      :

f f 2 {P, ✏, s}
f µB

[Bazavov et al., PRD 95 (2017) 054504]

• obtained curvatures are similar to the 
curvature of the pseudo-critical (the 
latter is not yet determined very well)

• compare to freeze-out data from 
STAR and ALICE: where does 
hadronization set in?

• note: physics changes rapidly in the 
interval 145 MeV < T < 165 MeV

0.0064  P
2  0.0101

Tc = 154(9) MeV
[hotQCD, PRD 90 
(2014) 094503]
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= MX

�2
X

SX�X

X�2
X

Expansion of the pressure:

X = B,Q, S : conserved charges

Lattice Experiment

p

T 4
=

1X

i,j,k=0

1

i!j!k!
�BQS

ijk,0

✓
µB

T

◆i ✓µQ

T

◆j ✓µS

T

◆k

=

=

 :=

S :=

�2 :=

M := mean
variance
skewness
kurtosis

• consider cumulant ratios to eliminate the freeze-out volume

Cumulant ratios (definition)

RX
12(T, µB) ⌘

�X
1 (T, µB)

�X
2 (T, µB)

RX
32(T, µB) ⌘

�X
3 (T, µB)

�X
2 (T, µB)

RX
42(T, µB) ⌘

�X
4 (T, µB)

�X
2 (T, µB)
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Cumulant ratios (expansion)

RX
12(T, µB) = rX,1

12 µ̂B + rX,3
12 µ̂3

B + · · ·

RX
32(T, µB) = rX,1

32 µ̂B + rX,3
32 µ̂3

B + · · ·

RX
42(T, µB) = rX,0

42 + rX,2
42 µ̂3

B + · · ·

• expand cumulant ratios in µ̂B = µB/T

) ratios are either even or odd in µ̂B

• expand cumulant ratios along a line of constant physics Tf(µB)

) need to take into account the change in temperature 

rX,k
nm ! rX,k

nm � f
2T0

drX,k�2
nm

dT

�����
T=T0

(for          ) k � 2
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Cumulant ratios from STAR

  

F. Karsch,   BEST meeting  2017 F. Karsch,   BEST meeting  2017 5

  Cumulant ratios of conserved net-charge fluctuations Cumulant ratios of conserved net-charge fluctuations 

cumulant ratios:

monotonicallymonotonically
risingrising

is monotonically rising

replace              in favor  of 

RP
12 = MP /�2

P RP
32 = SP�P

Observations: 

•         is monotonically rising in 
(relation is invertable)
RP

12

•                     (HRG:                   ) RP
32 < RP

12 RP
32 = RP

12

Key idea for the comparison of 
STAR data with lattice QCD: 

replace             by p
sNN

1/
p
sNN

STAR:

LQCD: replace       by RB
12

µ̂B

RP
12

1
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trick: express all ratios as function of 

• caution: RHIC measures net-proton and not net-baryon number fluctuations

RP
12 = tanh(µ̂B + µ̂Q) = µ̂B + O(µ̂3

B)

HRG:

µ̂S

µ̂Q

no      -dependence, 
neglect       -dependence

QCD:

to leading order:

  

F. Karsch, SQM, June  2016 F. Karsch, SQM, June  2016 30

Conserved charge fluctuations and freeze-outConserved charge fluctuations and freeze-out
                              mean over variance squaredmean over variance squared

(strangeness neutral, r=0.4)

[Bazavov et al., PRD 93 (2016) 014512] 

Cumulant ratios: aim for a comparison

RB/P
12

eliminates the need to first determine       from the STAR data µB)

) comparison is subject to systematic errors

RB
12 = rB,1

12 µ̂B + O(µ̂3
B)

) RB
12/R

P
12 = rB,1

12
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F. Karsch,   BEST meeting  2017 F. Karsch,   BEST meeting  2017 7

  Cumulant ratios of conserved net-charge fluctuations Cumulant ratios of conserved net-charge fluctuations 

kurtosis*variance:

X. Luo (STAR Collaboration),
PoS CPOD2014 (2014) 019

0.71.223

kurtosis*variance:

skewness*variance    :1/2

* not shown

slope of

at

* 

Cumulant ratios from STAR

  

F. Karsch,   BEST meeting  2017 F. Karsch,   BEST meeting  2017 7

  Cumulant ratios of conserved net-charge fluctuations Cumulant ratios of conserved net-charge fluctuations 

kurtosis*variance:

X. Luo (STAR Collaboration),
PoS CPOD2014 (2014) 019

0.71.223

kurtosis*variance:

skewness*variance    :1/2

* not shown

slope of

at

* 

Observations: 

• At              :   RP
12 = 0

RP
31

= RP
32/R

P
12

RP
42

RP
31 ' RP

42

• Slope:   

2

33rP,2
31 ' rP,2

42
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Cumulant ratios: insights from the Taylor expansion

expanding ratios of baryon number fluctuations at                        :                      µQ = µS = 0

RB
12 =

MB

�2
B

= µ̂B + O(µ̂3
B)

RB
32 = SB�B =

�B
4

�B
2

µ̂B + O(µ̂3
B)

RB
42 = SB�B =

�B
4

�B
2

+ O(µ̂2
B)

  

F. Karsch,   BEST meeting  2017 F. Karsch,   BEST meeting  2017 8

Conserved charge fluctuations and freeze-out Conserved charge fluctuations and freeze-out 

no need for talking
about a chemical 
potential

formulas are given for the case

However, entire analysis is done for

we obtain the (exact) relations:                      

1 R32 < R12 ,
�B

4

�B
2

< 1

2 rB,0
31 = rB,0

42

3 3rB,2
31 = rB,2

42 =
1

2

0

@�B
6

�B
2

�
 
�B

4

�B
2

!2
1

A
) and } RB

31 RB
42

are closely related 
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Cumulant ratios: insights from the Taylor expansion

expanding ratios of baryon number fluctuations at                                      :                      nS = 0, nQ/nB = 0.4

  

F. Karsch,   BEST meeting  2017 F. Karsch,   BEST meeting  2017 11

Conserved charge fluctuations and freeze-outConserved charge fluctuations and freeze-out
            mean, variance, mean, variance, skewnessskewness  and kurtosisand kurtosis

in a NLO Taylor expansion
are closely relatedare closely related

A. Bazavov et al. (HotQCD Collaboration),A. Bazavov et al. (HotQCD Collaboration),
in preparationin preparation

[Bazavov et al. (hotQCD), in preparation] 

RB
31(T, µB) = rB,0

31 + rB,2
31

�
RB

12

�2
+ · · ·

RB
42(T, µB) = rB,0

42 + rB,2
42

�
RB

12

�2
+ · · ·

we obtain numerically:                      
2

3 3rB,2
31 ' rB,2

42

rB,0
31 ' rB,0

42
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Cumulant ratios: insights from the Taylor expansion

expanding ratios of baryon number fluctuations along lines of constant physics:                             

8
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FIG. 3. �Left: The ratio of NLO and LO expansion coe�cients, rB,2
42 /rB,0

42 versus temperature for a strangeness neutral system,
ns = 0, with electric charge to baryon number ratio nQ/nB = 0.4. The black line shows the central value which is identical to
the solid line for the f

2 = 0 case shown in the right and figure. Right: The ratio rB,2
42,f/r

B,0
42 , which gives the ratio of NLO and

LO expansion coe�cients evaluated on a line in the T -µB plane as defined in Eq. 12. The band shows the shift of this ratio
(central values only) resulting from a variation of f

2 in the indicated interval.
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FIG. 4. Left: The NLO expansion coe�cient for the kurtosis ratio, rB,2
42 , and three times the NLO expansion coe�cient for

the skewness ratio, rB,2
31 . The inset shows the ratio of the NLO expansion coe�cients, rB,2

42 /rB,2
31 , in temperature range where

jackknife estimators for this ratio are stable. Right: Ratio of NLO expansion coe�cients of the skewness and kurtosis ratios
on lines of constant physics defined by pressure, energy density and entropy density, respectively. Also shown is the result for
vanishing curvature coe�cient (f

2 = 0).

The above observations also hold for the NLO correc-412

tions to the skewness ratio RB
31. We show a comparison413

of rB,2
42 and three times rB,2

31 in Fig. 4 (left). Obviously,414

despite of the large statistical errors, the central values of415

these observables match quite well. This hints at a strong416

correlation between these two NLO expansion coe�cients417

and allows to determine their ratio to much better accu-418

racy than the individual values would suggest. Nonethe-419

less the jackknife analysis of the ratio rB,2
42 /rB,2

31 still is420

di�cult at low and high temperature where both observ-421

ables are compatible with zero within errors. However,422

in the temperature interval 145 MeV < T < 175 MeV423

these expansion coe�cients are clearly negative and er-424

rors are su�ciently small to determine the ratio rB,2
42 /rB,2

31425

reliably. This is shown in the inset of Fig. 4 (left). As426

expected we find that also in the strangeness neutral case427

the ratio of expansion coe�cients is close to three, as it428

is the case for µQ = µS = 0 (see Eq. 28). The ratio has429

the tendency to drop with increasing temperature, sug-430

gesting that it will approach the ideal gas value at high431

temperature4.432

Using the temperature dependent curvature coe�-
cients f

2 we can determine the correction to NLO ex-

4 In the infinite temperature limit cumulants approach the ideal
gas limit. For the ratio of NLO expansion coe�cients one finds
in this limit, rB,2

42 /rB,2
31 = 1.98 for the strangeness neutral case,

nS = 0, with nQ/nB = 0.4.

rB,2
42 ! rB,2

42,f ⌘ rB,2
42 � f

2T0
drB,0

42

dT

�����
T=T0

rB,2
31 ! rB,2

31,f ⌘ rB,2
31 � f

2T0
drB,0

31

dT

�����
T=T0

[Bazavov et al. (hotQCD), in preparation] 

) we find:                      

rB,2
42,f/r

B,2
31,f = 3 � 3.6
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Skewness and kurtosis on a ''line of constant physics''Skewness and kurtosis on a ''line of constant physics''

– Temperature on the ''freeze-out'' line changes with increasing

– consider cumulant ratios on lines 

– Taylor expansion in T and 

A. Bazavov et al. (HotQCD Collaboration),A. Bazavov et al. (HotQCD Collaboration),
in preparationin preparation

A. Bazavov et al. arXiv:1701.04325A. Bazavov et al. arXiv:1701.04325

3

[Bazavov et al., PRD 95 (2017) 054504]
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Cumulant ratios: STAR vs. Lattice
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  Cumulant ratios of conserved net-charge fluctuations Cumulant ratios of conserved net-charge fluctuations 

kurtosis*variance:

X. Luo (STAR Collaboration),
PoS CPOD2014 (2014) 019

0.71.223

kurtosis*variance:

skewness*variance    :1/2

* not shown

slope of

at

* 
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  Cumulant ratios of conserved net-charge fluctuations Cumulant ratios of conserved net-charge fluctuations 

kurtosis*variance:

X. Luo (STAR Collaboration),
PoS CPOD2014 (2014) 019

0.71.223

kurtosis*variance:

skewness*variance    :1/2

* not shown

slope of

at

* 

[Bazavov et al. (hotQCD), in preparation] 

(not yet continuum extrapolated!)                             



C. Schmidt           CPOD’17, Stony Brook, NY 25

Disclaimer

need to understand further effects:

• non-equilibrium effects
[Berdnikov, Rajagopal, hep-ph/9912274] 

[Mukherjee et al., arXiv:1506.00645, arXiv:1605.09341] 

• proton vs. baryon number distributions
[Kitazawa et al. arXiv:1205.3292, arXiv:1303.3338] 

• acceptance and pt-cuts
[Bzdak, Koch, arXiv:1206.4286]

• rapidity dependence

[Garg et al., arXiv:1304.7133]
[Karsch, Morita, Redlich, arXiv:1508.02614]

[Lin, Stephanov, arXiv:1512.09125]

[Bzdak, Koch, arXiv:1707.02640]
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Summary

• The equation of state is very well determined for                   or equivalently 
for 

µB/T  2p
sNN � 19.6GeV

• A critical point at                   is strongly disfavored in the temperature range              µB/T  2
135 MeV < T < 155 MeV and its location at higher values of the temperature 
seems to be ruled out.

• The skewness and kurtosis ratios are strongly related                 ,  lattice 
calculations reproduce quite well qualitative features observed in these ratios, 
and also in       . (Results are not yet continuum extrapolated.)

RB
31, RB

42

• A expansion in       is well suited for a comparison of RHIC-BES data and 
lattice QCD data             

RB
12

• Need to further increase the accuracy of the 6th and 8th-order expansion 
coefficients, in order to further constrain the EoS, the location of the critical 
point and the cumulant rations. 

RB
32


