Cumulant ratios of net-baryon number fluctuations at small values of the baryon chemical potential

C.Schmidt

SPONSORED BY THE
Federal Ministry of Education
and Research

BNL-Bi-CCNU Collaboration:
A. Bazavov, H.-T. Ding, P. Hegde, O. Kaczmarek, F. Karsch, E. Laermann,
S. Mukherjee, H. Ohno, P. Petreczky, H. Sandmeyer, C. Schmidt,
S. Sharma, W. Soeldner, P. Steinbrecher

Motivation

- Understand and calculate QCD equilibrium thermodynamic quantities at nonzero temperature and baryon number densities from first principles
\longrightarrow is there evidence for a QCD critical point?
\longrightarrow can we understand the BES results of conserved charge fluctuations?
\longrightarrow what is the validity range of the HRG model?

Plan

The whole discussion and all results are based on Taylor expansion coefficients of the pressure of QCD, obtained at vanishing chemical potentials:

- Formulation of the method and status of ongoing calculations
- The radius of convergence and the QCD critical point
- Freeze-out and lines of constant physics
- Skewness and kurtosis of the net-proton number fluctuations at freeze-out

Taylor expansion in $\boldsymbol{\mu} / \boldsymbol{T}$ (methodology)

$$
\frac{p(\vec{\mu}, T)}{T^{4}}=\sum_{i, j, k=0}^{\infty} \frac{1}{i!j!k!} \chi_{i, j, k}^{B Q S}(T)\left(\frac{\mu_{B}}{T}\right)^{i}\left(\frac{\mu_{Q}}{T}\right)^{j}\left(\frac{\mu_{S}}{T}\right)^{k}
$$

with $\quad \chi_{i, j, k}^{B Q S}(T)=\left.\frac{1}{V T^{3}} \frac{\partial^{i+j+k} \ln Z(\vec{\mu}, T)}{\partial \hat{\mu}_{B}^{i} \partial \hat{\mu}_{Q}^{j} \partial \hat{\mu}_{S}^{k}}\right|_{\vec{\mu}=0}$ and $\hat{\mu}=\mu / T$
Calculate all Taylor expansions coefficients of the QCD grand canonical partition function in terms of three chemical potential ($\mu_{\mathrm{B}}, \mu_{\mathrm{Q}}, \mu_{\mathrm{S}}$) up to a given order
\rightarrow flexible framework, study

- strangeness neutral matter (heavy ions)
- strangeness rich matter (quark starts?)
- electrically charged matter

Taylor expansion in $\boldsymbol{\mu} / \boldsymbol{T}$ (methodology)

$$
\frac{p(\vec{\mu}, T)}{T^{4}}=\sum_{i, j, k=0}^{\infty} \frac{1}{i!j!k!} \chi_{i, j, k}^{B Q S}(T)\left(\frac{\mu_{B}}{T}\right)^{i}\left(\frac{\mu_{Q}}{T}\right)^{j}\left(\frac{\mu_{S}}{T}\right)^{k}
$$

with $\chi_{i, j, k}^{B Q S}(T)=\left.\frac{1}{V T^{3}} \frac{\partial^{i+j+k} \ln Z(\vec{\mu}, T)}{\partial \hat{\mu}_{B}^{i} \partial \hat{\mu}_{Q}^{j} \partial \mu_{S}^{k}}\right|_{\vec{\mu}=0}$ and $\hat{\mu}=\mu / T$
Example:

$$
\begin{aligned}
\frac{\partial^{2} \ln Z}{\partial \mu^{2}}= & \left\langle\operatorname{Tr}\left[M^{-1} M^{\prime \prime}\right]\right\rangle-\left\langle\operatorname{Tr}\left[M^{-1} M^{\prime} M^{-1} M^{\prime}\right]\right\rangle+\left\langle\operatorname{Tr}\left[M^{-1} M^{\prime}\right]^{2}\right\rangle \\
& \left.\simeq\left\langle n^{2}(x) \oint\right\rangle-\langle n(x) \oint n(y)\rangle+\langle n(x)\}(y)\right\rangle
\end{aligned}
$$

Taylor expansion in $\boldsymbol{\mu} / \boldsymbol{T}$ (status)

$$
\frac{p\left(T, \mu_{B}\right)-p(T, 0)}{T^{4}}=\frac{\chi_{2}^{B}(T)}{2} \hat{\mu}_{B}^{2}\left(1+\frac{1}{12} \frac{\chi_{4}^{B}(T)}{\chi_{2}^{B}(T)} \hat{\mu}_{B}^{2}+\frac{1}{360} \frac{\chi_{6}^{B}}{\chi_{2}^{B}} \hat{\mu}_{B}^{4}+\cdots\right)
$$

[BNL-Bi-CCNU, PRD 95 (20I7), 054504]
similar results obtained by Budapest-Wuppertal [Gunter et al., EPJ Web Conf I37 (20I7) 07008]

Taylor expansion in $\boldsymbol{\mu} / \boldsymbol{T}$ (status)

$$
\frac{p\left(T, \mu_{B}\right)-p(T, 0)}{T^{4}}=\frac{\chi_{2}^{B}(T)}{2} \hat{\mu}_{B}^{2}\left(1+\frac{1}{12} \frac{\chi_{4}^{B}(T)}{\chi_{2}^{B}(T)} \hat{\mu}_{B}^{2}+\frac{1}{360} \frac{\chi_{6}^{B}}{\chi_{2}^{B}} \hat{\mu}_{B}^{4}+\cdots\right)
$$

[BNL-Bi-CCNU, PRD 95 (20I7), 054504]
similar results obtained by Budapest-Wuppertal [Gunter et al., EPJ Web Conf I37 (20I7) 07008]

Taylor expansion in $\boldsymbol{\mu} / \boldsymbol{T}$ (status)

$$
\frac{p\left(T, \mu_{B}\right)-p(T, 0)}{T^{4}}=\frac{\chi_{2}^{B}(T)}{2} \hat{\mu}_{B}^{2}\left(1+\frac{1}{12} \frac{\chi_{4}^{B}(T)}{\chi_{2}^{B}(T)} \hat{\mu}_{B}^{2}+\frac{1}{360} \frac{\chi_{6}^{B}}{\chi_{2}^{B}} \hat{\mu}_{B}^{4}+\cdots\right)
$$

- $\mathcal{O}\left(\mu^{2}\right): \checkmark$
- $\mathcal{O}\left(\mu^{4}\right):$
- $\mathcal{O}\left(\mu^{6}\right)$: still large stat. errors, need consolidations
[BNL-Bi-CCNU, PRD 95 (20I7), 054504]
similar results obtained by Budapest-Wuppertal [Gunter et al., EPJ Web Conf I37 (20I7) 07008]

Taylor expansion in $\boldsymbol{\mu} / \boldsymbol{T}$ (status)

$$
\frac{p\left(T, \mu_{B}\right)-p(T, 0)}{T^{4}}=\frac{\chi_{2}^{B}(T)}{2} \hat{\mu}_{B}^{2}\left(1+\frac{1}{12} \frac{\chi_{4}^{B}(T)}{\chi_{2}^{B}(T)} \hat{\mu}_{B}^{2}+\frac{1}{360} \frac{\chi_{6}^{B}}{\chi_{2}^{B}} \hat{\mu}_{B}^{4}+\cdots\right)
$$

- $\mathcal{O}\left(\mu^{2}\right):$
- $\mathcal{O}\left(\mu^{4}\right):$
- $\mathcal{O}\left(\mu^{6}\right)$: still large stat. errors, need consolidations
- $\mathcal{O}\left(\mu^{8}\right)$: work in progress, some coefficients might require further tuning of algorithms
- $\mathcal{O}\left(\mu^{10}\right)$: will require new strategies, many ideas to pursue

Estimating the radius of convergence

$$
\frac{p\left(T, \mu_{B}\right)-p(T, 0)}{T^{4}}=\frac{\chi_{2}^{B}(T)}{2} \hat{\mu}_{B}^{2}\left(1+\frac{1}{12} \frac{\chi_{4}^{B}(T)}{\chi_{2}^{B}(T)} \hat{\mu}_{B}^{2}+\frac{1}{360} \frac{\chi_{6}^{B}}{\chi_{2}^{B}} \hat{\mu}_{B}^{4}+\cdots\right)
$$

possible definitions of estimators:

$$
\begin{aligned}
& r_{2 n}^{P}=\left|\frac{(2 n+2)(2 n+1) \chi_{2 n}^{B}}{\chi_{2 n+2}^{B}}\right|^{1 / 2} \\
& r_{2 n}^{\chi}=\left|\frac{2 n(2 n-1) \chi_{2 n}^{B}}{\chi_{2 n+2}^{B}}\right|^{1 / 2}
\end{aligned}
$$

true radius of convergence:

$$
\rho(T)=\lim _{n \rightarrow \infty} r_{2 n}^{P}(T)=\lim _{n \rightarrow \infty} r_{2 n}^{\chi}(T)
$$

[BNL-Bi-CCNU, PRD 95 (2017), 054504]

- the radius of convergence only corresponds to a critical point if all expansion coefficients are positive
- HRG: all ratios $\chi_{2 n}^{B} / \chi_{2 n+2}^{B}$ are unity.

Estimating the radius of convergence

baryon number fluctuations as function of $\hat{\mu}_{B}$:

- agreement with HRG starts to deteriorate for $\mathrm{T}>150 \mathrm{MeV}$
- no evidence for enhanced net-baryon number fluctuations (for $\mu_{B} / \boldsymbol{T} \leq 2, \mathrm{~T}>135 \mathrm{MeV}$)

Adapting the expansion to the HIC case

Apply conditions as in the HIC fireball

- strangeness neutrality: $\left\langle N_{S}\right\rangle=0$
- isospin asymmetry: $\left\langle N_{Q}\right\rangle=r\left\langle N_{B}\right\rangle$

$$
\begin{aligned}
& r \approx 0.4 \\
& \text { for } \mathrm{Au}-\mathrm{Au} \\
& \text { and } \mathrm{Pb}-\mathrm{Pb}
\end{aligned}
$$

expand in powers of $\mu_{B}, \mu_{Q}, \mu_{S}$ solve for μ_{Q}, μ_{S}

$$
\begin{aligned}
& \mu_{Q}\left(T, \mu_{B}\right)=q_{1}(T) \hat{\mu}_{B}+q_{3}(T) \hat{\mu}_{B}^{3}+q_{5}(T) \hat{\mu}_{B}^{5}+\cdots \\
& \mu_{S}\left(T, \mu_{B}\right)=s_{1}(T) \hat{\mu}_{B}+s_{3}(T) \hat{\mu}_{B}^{3}+s_{5}(T) \hat{\mu}_{B}^{5}+\cdots
\end{aligned}
$$

$$
\text { LO } \quad \text { NLO } \quad \text { NNLO } \quad \hat{\mu}_{B}=\mu_{B} / T
$$

$$
\begin{aligned}
\frac{\Delta p}{T^{4}} & =\frac{1}{2} \chi_{2}^{B} \hat{\mu}_{B}^{2}+\frac{1}{2} \chi_{2}^{Q} \hat{\mu}_{Q}^{2}+\frac{1}{2} \chi_{2}^{S} \hat{\mu}_{S}^{2}+\chi_{11}^{B Q} \hat{\mu}_{B} \hat{\mu}_{Q}+\chi_{11}^{B S} \hat{\mu}_{B} \hat{\mu}_{S}+\chi_{11}^{Q S} \hat{\mu}_{Q} \hat{\mu}_{S}+\cdots \\
& =\frac{1}{2} \underbrace{\left(\chi_{2}^{B}+\chi_{2}^{Q} q_{1}^{2}+\chi_{2}^{S} s_{1}^{2}+2 \chi_{11}^{B Q} q_{1}+2 \chi_{11}^{B S} s_{1}+2 \chi_{11}^{Q S} q_{1} s_{1}\right)}_{p_{2}} \hat{\mu}_{B}^{2}+\cdots
\end{aligned}
$$

The strangeness neutral coefficients ($r=0.4$)

- fits are from
[Bazavov et al., PRD 95 (2017) 054504]
- data updated : hotQCD 2017
- P_{6} negative for $\boldsymbol{T} \gtrsim \mathbf{1 5 0} \mathrm{MeV}$

The equation of state for $\mu_{B}>0$

$$
\frac{P\left(T, \mu_{B}\right)-P(T, 0)}{T^{4}}=P_{2}(T)\left(\frac{\mu_{B}}{T}\right)^{2}+P_{4}(T)\left(\frac{\mu_{B}}{T}\right)^{4}+P_{6}(T)\left(\frac{\mu_{B}}{T}\right)^{6}+\cdots
$$

- $(20-30) \%$ contribution to the total pressure at $\mu_{B} / \boldsymbol{T}=2$
\Rightarrow The $6^{\text {th }}$-order EoS is well controlled for $\mu_{B} / \boldsymbol{T} \leq \mathbf{2}$ or equivalently $\sqrt{s_{N N}} \geq 19.6 \mathrm{GeV}$

Lines of "constant physics"

- assume parametrization of line of constant observable f, with $f \in\{P, \epsilon, s\}$, i.e. pressure, energy density or entropy. f is even function of μ_{B} :

$$
T_{f}\left(\mu_{B}\right)=T_{0}\left(1-\kappa_{2}^{f}\left(\frac{\mu_{B}}{T_{0}}\right)^{2}-\kappa_{4}^{f}\left(\frac{\mu_{B}}{T}\right)^{4}\right)
$$

$$
\begin{gathered}
T_{c}=154(9) \mathrm{MeV} \\
\text { [hotQCD, PRD } 90 \\
(2014) 094503]
\end{gathered}
$$

[Bazavov et al., PRD 95 (2017) 054504]

- obtained curvatures are similar to the curvature of the pseudo-critical (the latter is not yet determined very well)

$$
0.0064 \leq \kappa_{2}^{P} \leq 0.0101
$$

- compare to freeze-out data from STAR and ALICE: where does hadronization set in?
- note: physics changes rapidly in the interval $145 \mathrm{MeV}<\mathrm{T}<165 \mathrm{MeV}$

Cumulant ratios (definition)

Expansion of the pressure:

$$
\frac{p}{T^{4}}=\sum_{i, j, k=0}^{\infty} \frac{1}{i!j!k!} \chi_{i j k, 0}^{B Q S}\left(\frac{\mu_{B}}{T}\right)^{i}\left(\frac{\mu_{Q}}{T}\right)^{j}\left(\frac{\mu_{S}}{T}\right)^{k}
$$

$$
X=B, Q, S: \text { conserved charges }
$$

- consider cumulant ratios to eliminate the freeze-out volume

Lattice

$$
\begin{array}{lll}
R_{12}^{X}\left(T, \mu_{B}\right) \equiv \frac{\chi_{1}^{X}\left(T, \mu_{B}\right)}{\chi_{2}^{X}\left(T, \mu_{B}\right)} & = & \frac{M_{X}}{\sigma_{X}^{2}} \\
R_{32}^{X}\left(T, \mu_{B}\right) \equiv \frac{\chi_{3}^{X}\left(T, \mu_{B}\right)}{\chi_{2}^{X}\left(T, \mu_{B}\right)} & = & S_{X} \sigma_{X} \quad \begin{array}{l}
M:=\text { mean } \\
\sigma^{2}:=\text { variance } \\
S:=\text { skewness } \\
\kappa:=\text { kurtosis }
\end{array} \\
R_{42}^{X}\left(T, \mu_{B}\right) \equiv \frac{\chi_{4}^{X}\left(T, \mu_{B}\right)}{\chi_{2}^{X}\left(T, \mu_{B}\right)}= & \kappa_{X} \sigma_{X}^{2}
\end{array}
$$

Cumulant ratios (expansion)

- expand cumulant ratios in $\hat{\mu}_{B}=\mu_{B} / T$

$$
\begin{aligned}
& R_{12}^{X}\left(T, \mu_{B}\right)=r_{12}^{X, 1} \hat{\mu}_{B}+r_{12}^{X, 3} \hat{\mu}_{B}^{3}+\cdots \\
& R_{32}^{X}\left(T, \mu_{B}\right)=r_{32}^{X, 1} \hat{\mu}_{B}+r_{32}^{X, 3} \hat{\mu}_{B}^{3}+\cdots \\
& R_{42}^{X}\left(T, \mu_{B}\right)=r_{42}^{X, 0}+r_{42}^{X, 2} \hat{\mu}_{B}^{3}+\cdots
\end{aligned}
$$

\Rightarrow ratios are either even or odd in $\hat{\mu}_{B}$

- expand cumulant ratios along a line of constant physics $T_{f}\left(\mu_{B}\right)$
\Rightarrow need to take into account the change in temperature

$$
r_{n m}^{X, k} \rightarrow r_{n m}^{X, k}-\left.\kappa_{2}^{f} T_{0} \frac{\mathrm{~d} r_{n m}^{X, k-2}}{\mathrm{~d} T}\right|_{T=T_{0}} \quad(\text { for } k \geq 2)
$$

Cumulant ratios from STAR

Observations:

- R_{12}^{P} is monotonically rising in $1 / \sqrt{s_{N N}}$ (relation is invertable)
- $R_{32}^{P}<R_{12}^{P}$ (HRG: $R_{32}^{P}=R_{12}^{P}$) (1)

$$
\boldsymbol{R}_{32}^{P}=S_{P} \sigma_{P}
$$

Key idea for the comparison of STAR data with lattice QCD:

STAR: replace $\sqrt{s_{N N}}$ by R_{12}^{P}
LQCD: replace $\hat{\mu}_{B}$ by R_{12}^{B}

Cumulant ratios: aim for a comparison

trick: express all ratios as function of $\boldsymbol{R}_{12}^{B / P}$
\Rightarrow eliminates the need to first determine μ_{B} from the STAR data

- caution: RHIC measures net-proton and not net-baryon number fluctuations
\Rightarrow comparison is subject to systematic errors

HRG:

$R_{12}^{P}=\tanh \left(\hat{\mu}_{B}+\hat{\mu}_{Q}\right)=\hat{\mu}_{B}+\mathcal{O}\left(\hat{\mu}_{B}^{3}\right)$
no $\hat{\mu}_{S}$-dependence,
neglect $\hat{\mu}_{Q}$-dependence
QCD:
$R_{12}^{B}=r_{12}^{B, 1} \hat{\mu}_{B}+\mathcal{O}\left(\hat{\mu}_{B}^{3}\right)$
(strangeness neutral, $r=0.4$)
\Rightarrow to leading order: $R_{12}^{B} / R_{12}^{P}=r_{12}^{B, 1}$
[Bazavov et al., PRD 93 (2016) 014512]

Cumulant ratios from STAR

Observations:

- At $R_{12}^{P}=0: R_{31}^{P} \simeq R_{42}^{P}$
- Slope: $3 r_{31}^{P, 2} \simeq r_{42}^{P, 2}$
(3)

Cumulant ratios: insights from the Taylor expansion

expanding ratios of baryon number fluctuations at $\mu_{Q}=\mu_{S}=0$:

$$
\begin{aligned}
& R_{12}^{B}=\frac{M_{B}}{\sigma_{B}^{2}}=\hat{\mu}_{B}+\mathcal{O}\left(\hat{\mu}_{B}^{3}\right) \\
& R_{32}^{B}=S_{B} \sigma_{B}=\frac{\chi_{4}^{B}}{\chi_{2}^{B}} \hat{\mu}_{B}+\mathcal{O}\left(\hat{\mu}_{B}^{3}\right) \\
& R_{42}^{B}=S_{B} \sigma_{B}=\frac{\chi_{4}^{B}}{\chi_{2}^{B}}+\mathcal{O}\left(\hat{\mu}_{B}^{2}\right)
\end{aligned}
$$

we obtain the (exact) relations:
(1) $R_{32}<R_{12} \Leftrightarrow \chi_{4}^{B} \chi_{2}^{B}<1$
$\left.\begin{array}{l}\text { (2) } r_{31}^{B, 0}=r_{42}^{B, 0} \\ \text { (3) } 3 r_{31}^{B, 2}=r_{42}^{B, 2}=\frac{1}{2}\left(\frac{\chi_{6}^{B}}{\chi_{2}^{B}}-\left(\frac{\chi_{4}^{B}}{\chi_{2}^{B}}\right)^{2}\right)\end{array}\right\} \Rightarrow \begin{aligned} & R_{31}^{B} \text { and } R_{42}^{B} \\ & \text { are closely related }\end{aligned}$

Cumulant ratios: insights from the Taylor expansion

expanding ratios of baryon number fluctuations at $n_{S}=0, n_{Q} / n_{B}=0.4$:

$$
\begin{aligned}
& R_{31}^{B}\left(T, \mu_{B}\right)=r_{31}^{B, 0}+r_{31}^{B, 2}\left(R_{12}^{B}\right)^{2}+\cdots \\
& R_{42}^{B}\left(T, \mu_{B}\right)=r_{42}^{B, 0}+r_{42}^{B, 2}\left(R_{12}^{B}\right)^{2}+\cdots
\end{aligned}
$$

we obtain numerically:
(2) $r_{31}^{B, 0} \simeq r_{42}^{B, 0}$
(3) $3 r_{31}^{B, 2} \simeq r_{42}^{B, 2}$

[Bazavov et al. (hotQCD), in preparation]

Cumulant ratios: insights from the Taylor expansion

expanding ratios of baryon number fluctuations along lines of constant physics:

$$
\begin{aligned}
& r_{31}^{B, 2} \rightarrow r_{31, f}^{B, 2} \equiv r_{31}^{B, 2}-\left.\kappa_{2}^{f} T_{0} \frac{d r_{31}^{B, 0}}{d T}\right|_{T=T_{0}} \\
& r_{42}^{B, 2} \rightarrow r_{42, f}^{B, 2} \equiv r_{42}^{B, 2}-\left.\kappa_{2}^{f} T_{0} \frac{d r_{42}^{B, 0}}{d T}\right|_{T=T_{0}}
\end{aligned}
$$

[Bazavov et al. (hotQCD), in preparation]

Cumulant ratios: STAR vs. Lattice

(not yet continuum extrapolated!)

[Bazavov et al. (hotQCD), in preparation]

Disclaimer

need to understand further effects:

- non-equilibrium effects
[Berdnikov, Rajagopal, hep-ph/99 12274]
[Mukherjee et al., arXiv:I506.00645, arXiv:1605.09341]
- proton vs. baryon number distributions
[Kitazawa et al. arXiv: 1205.3292 , arXiv: 1303.3338]
- acceptance and pt-cuts
[Bzdak, Koch, arXiv:1206.4286]
[Garg et al., arXiv: I 304.7133]
[Karsch, Morita, Redlich, arXiv:1508.02614]
[Lin, Stephanov, arXiv:15|2.09|25]
- rapidity dependence
[Bzdak, Koch, arXiv:1707.02640]

Summary

- The equation of state is very well determined for $\mu_{B} / T \leq 2$ or equivalently for $\sqrt{s_{N N}} \geq 19.6 \mathrm{GeV}$
- A critical point at $\mu_{B} / \boldsymbol{T} \leq 2$ is strongly disfavored in the temperature range $135 \mathrm{MeV}<\boldsymbol{T}<\mathbf{1 5 5} \mathrm{MeV}$ and its location at higher values of the temperature seems to be ruled out.
- A expansion in \boldsymbol{R}_{12}^{B} is well suited for a comparison of RHIC-BES data and lattice QCD data
- The skewness and kurtosis ratios are strongly related $\boldsymbol{R}_{31}^{B}, \boldsymbol{R}_{42}^{B}$, lattice calculations reproduce quite well qualitative features observed in these ratios, and also in R_{32}^{B}. (Results are not yet continuum extrapolated.)
- Need to further increase the accuracy of the $6^{\text {th }}$ and $8^{\text {th }}$-order expansion coefficients, in order to further constrain the EoS, the location of the critical point and the cumulant rations.

