## Summary of CPOD 2017 (Critical) comments and personal observations

M. Stephanov



#### Blanket apology for talks uncovered

## History

Cagniard de la Tour (1822): discovered continuos transition from liquid to vapour by heating alcohol, water, etc. in a gun barrel, glass tubes.



Summary

Faraday (1844) - liquefying gases:

"Cagniard de la Tour made an experiment some years ago which gave me occasion to want a new word."

Mendeleev (1860) – measured vanishing of liquid-vapour surface tension: "Absolute boiling temperature".

Andrews (1869) – systematic studies of many substances established continuity of vapour-liquid phases. Coined the name "critical point".

van der Waals (1879) – in "On the continuity of the gas and liquid state" (PhD thesis) wrote e.o.s. with a critical point.



Smoluchowski, Einstein (1908,1910) – explained critical opalescence.

Landau – classical theory of critical phenomena

Fisher, Kadanoff, Wilson - scaling, full fluctuation theory based on RG.

| Substance <sup>[13][14]</sup> ¢ | Critical temperature +   | Critical pressure (absolute) \$ |
|---------------------------------|--------------------------|---------------------------------|
| Argon                           | -122.4 °C (150.8 K)      | 48.1 atm (4,870 kPa)            |
| Ammonia <sup>[15]</sup>         | 132.4 °C (405.5 K)       | 111.3 atm (11,280 kPa)          |
| Bromine                         | 310.8 °C (584.0 K)       | 102 atm (10,300 kPa)            |
| Caesium                         | 1,664.85 °C (1,938.00 K) | 94 atm (9,500 kPa)              |
| Chlorine                        | 143.8 °C (416.9 K)       | 76.0 atm (7,700 kPa)            |
| Ethanol                         | 241 °C (514 K)           | 62.18 atm (6,300 kPa)           |
| Fluorine                        | -128.85 °C (144.30 K)    | 51.5 atm (5,220 kPa)            |
| Helium                          | -267.96 °C (5.19 K)      | 2.24 atm (227 kPa)              |
| Hydrogen                        | -239.95 °C (33.20 K)     | 12.8 atm (1,300 kPa)            |
| Krypton                         | -63.8 °C (209.3 K)       | 54.3 atm (5,500 kPa)            |
| CH <sub>4</sub> (methane)       | -82.3 °C (190.8 K)       | 45.79 atm (4,640 kPa)           |
| Neon                            | -228.75 °C (44.40 K)     | 27.2 atm (2,760 kPa)            |
| Nitrogen                        | -146.9 °C (126.2 K)      | 33.5 atm (3,390 kPa)            |
| Oxygen                          | -118.6 °C (154.6 K)      | 49.8 atm (5,050 kPa)            |
| CO <sub>2</sub>                 | 31.04 °C (304.19 K)      | 72.8 atm (7,380 kPa)            |
| N <sub>2</sub> O                | 36.4 °C (309.5 K)        | 71.5 atm (7,240 kPa)            |
| H <sub>2</sub> SO <sub>4</sub>  | 654 °C (927 K)           | 45.4 atm (4,600 kPa)            |
| Xenon                           | 16.6 °C (289.8 K)        | 57.6 atm (5,840 kPa)            |
| Lithium                         | 2,950 °C (3,220 K)       | 652 atm (66,100 kPa)            |
| Mercury                         | 1,476.9 °C (1,750.1 K)   | 1,720 atm (174,000 kPa)         |
| Sulfur                          | 1,040.85 °C (1,314.00 K) | 207 atm (21,000 kPa)            |
| Iron                            | 8,227 °C (8,500 K)       |                                 |
| Gold                            | 6,977 °C (7,250 K)       | 5,000 atm (510,000 kPa)         |
| Water[2][16]                    | 373.946 °C (647.096 K)   | 217.7 atm (22.06 MPa)           |

# Critical point is a ubiquitous phenomenon

Critical point between the QGP and hadron gas phases? QCD is a relativistic theory of a fundamental force. CP is a singularity of EOS, anchors the 1st order transition.



Critical point between the QGP and hadron gas phases? QCD is a relativistic theory of a fundamental force. CP is a singularity of EOS, anchors the 1st order transition.



Lattice QCD at  $\mu_B \lesssim 2T$  – a crossover.

C.P. is ubiquitous in models (NJL, RM, Holog., Strong coupl. LQCD, ...)

Lattice simulations.

The *sign problem* restricts reliable lattice calculations to  $\mu_B = 0$ .

Under different assumptions one can estimate the position of the critical point, assuming it exists, by extrapolation from  $\mu = 0$ .



Heavy-ion collisions.

Lattice simulations.

The *sign problem* restricts reliable lattice calculations to  $\mu_B = 0$ .

Under different assumptions one can estimate the position of the critical point, assuming it exists, by extrapolation from  $\mu = 0$ .





Lattice simulations.

The *sign problem* restricts reliable lattice calculations to  $\mu_B = 0$ .

Under different assumptions one can estimate the position of the critical point, assuming it exists, by extrapolation from  $\mu = 0$ .

Heavy-ion collisions.



Lattice simulations.

The *sign problem* restricts reliable lattice calculations to  $\mu_B = 0$ .

Under different assumptions one can estimate the position of the critical point, assuming it exists, by extrapolation from  $\mu = 0$ .





## Connecting theory and experiment



- Develop EOS with critical point which also matches available lattice data Parotto
- Implement it into a realistic hydro simulation Shen, Yin, Song, Pratt, ...
- Compare with experiments to constrain parameters of the critical point: position, non-universal amplitudes, angles, etc. Auvinen
- Develop theory of the CME in heavy-ion collisions and embed in MHD Schlichting, Hirono, Shi ...
- Sompare with experiments. Isobaric run in 2018! Wen
- Vorticity and polarization. Upsal, Wang

## Lattice



[BNL-Bi-CCNU, PRD 95 (2017), 054504]

Ratios of Taylor coeffs. are *estimators* of the radius of convergence. Cannot predict, or *exclude*, C.P. without assumptions about *asymptotics*.

M. Stephanov

## Lattice



#### [BNL-Bi-CCNU, PRD 95 (2017), 054504]

• Critical point is not always the nearest singularity. E.g.: The convergence radius at  $T_c$  for  $m_q = 0$  is zero (hep-lat/0603014).

M. Stephanov



M. Stephanov

CPOD 2017 12 / 1

## Lattice susceptibilities vs STAR data



.

Two caveats:

## Lattice susceptibilities vs STAR data



Two caveats:

.

● Isospin blind correlations:  $R_{n2}^B - 1 \approx (R_{n2}^P - 1) \times 2^{n-1}$ 

• 
$$\Delta y \ll \Delta y_{\text{corr}}$$
:  
 $R_{n2}(\Delta y) - 1 \sim \Delta y^{n-1}$ 



## Parameterized EOS for hydro simulations

### Critical EoS: the total pressure

```
Parotto
```

With these ingredients, one can build the total pressure:

$$P(T, \mu_B) = T^4 \sum_{n} c_{\text{reg}}^n(T) \left(\frac{\mu_B}{T}\right)^n + T_C^4 P_{\text{crit}}(T, \mu_B)$$



M. Stephanov

## Hydrodynamic simulations



Summarv

## Hydrodynamic simulations



• More net baryon numbers are transported to mid-rapidity with a larger diffusion constant

#### Constraints on net baryon diffusion and initial condition

| Chun Shen    | CPOD 2017 | 20/24 |
|--------------|-----------|-------|
|              |           |       |
| M. Stephanov | Summary   |       |

## Critical slowing down and hydrodynamics

Yin

• "+": adding critical slow modes (parametrically longer life than other microscopic modes).



## Hydro+

• "Hydro+" one mode qualitatively captures the transition from hydro regime  $\omega < 1/\xi^3$  to "hydro+" regime  $\omega > 1/\xi^3$ . (P<sub>Bulk</sub>( $\omega$ ) from mode H)

 $(\rho_{\text{Bulk}}(\omega) \text{ from hydro+one mode })$ 

- One mode is not enough to fully capture the critical dynamic behavior.
- Next step: Hydro+ a spectrum of slow modes.

Hydro+

$$\frac{\text{Construction of hydro} + \varphi(t, x; Q)}{s_{+}(\varepsilon, n, \varphi)} \longrightarrow s_{+}(\varepsilon, n, \varphi(Q)) \quad (\text{thus } p_{+}(\varepsilon, n, \varphi(Q)))}{\pi = \partial s_{+}(\varepsilon, n, \varphi)/\partial \varphi} \longrightarrow \pi \quad (Q) = \delta s_{+}(\varepsilon, n, \varphi(Q))/\delta \varphi(Q)}$$
$$(u^{\mu} \partial_{\mu})\phi = -\gamma_{\phi}\pi - \dots \qquad \longrightarrow \quad (u^{\mu} \partial_{\mu})\phi(Q) = -\gamma_{\phi}(Q) \quad \pi(Q) - \dots$$
$$To \text{ proceed, a more "microscopic" understanding of critical slow modes is needed}$$
$$\varphi(t, x; Q) = \int d^{3}\Delta x < \delta M(t, x + \Delta x) \quad \delta M(t, x - \Delta x) > e^{-iQ \quad \Delta x}$$

 $\phi(t,x;Q)$  may be viewed as many local slow modes with label Q at a fluid cell (t,x).

M. Stephanov

ī.

## Hydrodynamic fluctuations

- Initial state fluctuations:
  - Long rapidity correlations
  - *\_\_\_\_\_ v<sub>n</sub>'s*
- Thermo/hydro-dynamic fluctuations.
  - **Solution** Correlations over rapidity  $\Delta y_{\rm corr} \sim 1$ .



• Critical fluctuations. Even for  $\xi = 2 - 3$  fm  $\Delta \eta = \xi / \tau \ll 1$ .

## Dynamics of fluctuations

#### Thermal fluctuations need time to equilibrate.



Some modes could remain out of eqlbm. Dynamics of fluctuations: Mazeliauskas, Teaney, Lau, Song

This is especially true near critical point due to critical slowing down.

This is the origin of the Hydro+ modes.

### Experiments

STAR

## Net-Proton Fourth-Order Fluctuation



Non-monotonic energy dependence is observed for 4<sup>th</sup> order net-proton, proton fluctuations in most central Au+Au collisions.

$$\kappa\sigma^2 = \frac{C_4}{C_2}$$

 UrQMD results show monotonic decrease with decreasing collision energy.

August 7, 2017

M. Stephanov

Roli Esha (UCLA)

Summarv

11

#### **Control Measurements for CEP Signatures**



 $\rightarrow$  FXT measurements needed to determine shape of  $k\sigma^2$  observable at lower energies



Kathryn Meehan -- UC Davis/LBNL -- CPOD 2017

6

#### **Control Measurements for CEP Signatures**



 $\rightarrow$  FXT measurements needed to determine shape of  $k\sigma^2$  observable at lower energies



M. Stephanov

## Acceptance dependence

# The acceptance dependence consistent with $\Delta y^{n-1}$ (Ling-MS 1512.09125; Bzdak-Koch 1607.07375)



As long as  $\Delta y \ll \Delta y_{\rm corr}$  the correlators  $\hat{\kappa}_n$  count the number of *n*-plets in acceptance.

## Factorial cumulants

More precisely, the scaling with  $\Delta y$  is for *factorial* cumulants ( $\hat{\kappa}_n$  or  $C_n$ ). Because they isolate irreducible *n*-point correlations.

#### Ling & Stephanov, PRC 93, 034915 (2016)

The cumulants  $\kappa_k$  hold information on multi-particle correlators  $C_k$ :

| $\kappa_3 = < N > + 3C_2 + C_3$        | $\overline{\boldsymbol{\mathcal{L}}_{\bullet} + (\ \boldsymbol{\cdot}_{\bullet} + \boldsymbol{\mathcal{L}}_{\bullet} + \boldsymbol{\mathcal{L}}_{\bullet} + \boldsymbol{\mathcal{L}}_{\bullet}) + \boldsymbol{\boldsymbol{\cdot}}_{\bullet}}$ |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\kappa_4 = < N > + 7C_2 + 6C_3 + C_4$ | $\overset{+(\square+\square+\Pi+\Pi)+(\square+\Pi+X)}{\bowtie}$                                                                                                                                                                               |
|                                        | $+(\begin{array}{c} \overbrace{} + \overbrace{} ) + \overbrace{}$                                                     |

Bzdak, Koch & Strodthoff, PRC 95, 054906 (2017) 🗲 based on STAR data (X. Luo et al., CPOD2014)

Propose  $C_k$  vs.  $N_{part}$  (&  $\Delta y$ ) as a better approach to isolate critical fluctuations:

Normal cumulants (n > 2) are deviations from normal distribution. Factorial cumulants – from Poisson distribution.

M. Stephanov

Summary

One can describe the correlations in the language of "clusters" (Bzdak). Or, more physically, repusive mean-field (Petreczky).

The correlations induced by critical mode have similar effect.



*Isospin blind n*-particle correlations. Characteristic *non-monotonous*  $\sqrt{s}$  dependence.

The size of the "cluster" of order number of particles within  $\xi^3$  (qualitatively).

## Critical fluctuations and experimental observables

Observed fluctuations are related to fluctuations of  $\sigma$ . MS-Rajagopal-Shuryak PRD60(1999)114028; MS PRL102(2009)032301)

Think of a collective mode described by field  $\sigma$  such that  $m = m(\sigma)$ :

$$\delta n_{\boldsymbol{p}} = \delta n_{\boldsymbol{p}}^{\text{free}} + \frac{\partial \langle n_{\boldsymbol{p}} \rangle}{\partial \sigma} \times \boldsymbol{\delta \sigma}$$

The cumulants of multiplicity  $M \equiv \int_{p} n_{p}$ :  $(M_{P} \sim n_{B} \times \Delta y)$ 



M. Stephanov

## Back to the two-point correlations

#### Preliminary, but very interesting:



- Non-monotonous √s dependence with max near 19 GeV.
- Charge/isospin blind.
- $\Delta \phi$  (in)dependence is as expected from critical correlations.
- Width  $\Delta \eta$  suggests soft pions – but  $p_T$  dependence need to be checked.
- But: no signal in  $R_2$  for *K* or *p*.

Summary

### Intriguing nontrivial $\sqrt{s}$ dependence in bulk observables





Singha

NA61/SHINE: Pulawski, Gazdzicki

Critical point, first order transition/onset of deconfinement, ...?

M. Stephanov

## CME at RHIC: Isobars

Wen

• If it's 20% CME-driven, the difference in  $\Delta \gamma$  is  $5\sigma$  above  $\epsilon_2$ 



## Other Talks About Chiral Effects @ CPOD 2017

[WEN, Liwen WED 9:00]

Searches for Chiral Effects and Prospects for Isobaric Collisions at STAR/RHIC

[SCHLICHTING, Soeren WED 9:30] Chiral magnetic effect and anomalous transport in real time

[HIRONO, Yuji WED 10:00] Properties of chiral magnetohydrodynamics

[UPSAL, Isaac WED 11:00]

Global polarization of Lambda hyperons in Au+Au Collisions at RHIC

[WANG, Qun WED 11:30] Global Lambda polarization in heavy-ion collisions

[SORIN, Alexander WED 12:00] Vorticity and polarization in baryon-rich matter

[TU, Zhoudunming WED 14:00]

Studies of charge-dependent azimuthal correlations in search for the chiral magnetic effect in pPb and PbPb collisions at CMS

[YEE, Ho-Ung WED 14:30] Anatomy of Chiral Magnetic Effect In and Out of Equilibrium

## [VENUGOPALAN, Raju WED 15:00] World-line approach to chiral kinetic theory

## Conclusions

- This is the most exciting time for CPOD
- New and groundbreaking results in theory (BEST) and intriguing data from experiment (STAR, HADES, NA61/SHINE). More to think about and to analyse.
- Isobar run in 2018. Fixed target at RHIC.
- RHIC BES-II
- Future facilities: CBM/FAIR, NICA, J-PARK.

"Dangerous to make predictions, especially about the future," but it is reasonable to expect an exciting time ahead.



#### Local Organizing Committee

- Thomas Hemmick (SBU)
- 🕨 Jiangyong Jia (SBU)
- Dmitri Kharzeev (SBU, BNL)
- Roy Lacey (Co-chair) (SBU)
- 🕨 Swagato Mukherjee (Co-chair, BNL)
- Edward Shuryak (SBU)
- 🕨 Paul Sorensen (BNL)
- Derek Teaney (SBU)
- Zhangbu Xu (BNL)

# **THANK YOU!**