Joint Institute for Nuclear Research International Intergovernmental Organization

C*

(Ŧ

Baryon rich matter research at NICA

V. Kekelidze, A. Kovalenko, R. Lednicky, V. Matveev, I. Meshkov, <u>A. Sorin</u>, G. Trubnikov (for the NICA collaboration)

Critical Point and Onset of Deconfinement Stony Brook University, USA, 11 August 2017

45 T*m, 4.5 GeV/u for **Au**⁷⁹⁺

Civil Construction

Exploration of the QCD Phase Diagram

Exploring baryon rich matter: maximum freeze-out density

NICA is well suited for exploring the transition between hadronic and QG phases at high net baryon density This is a top priority of the NICA program

Present and future HI experiments

Physics objectives

- Bulk properties, EOS
 - particle yields & spectra, ratios, femtoscopy, flow
- In-Medium modification of hadron properties
 onset of low-mass dilepton enhancement
- Deconfinement (chiral) phase transition at high $\rho_{\rm B}$
 - enhanced strangeness production
- QCD Critical Point
 - event-by-event fluctuations & correlations
- Chiral Magnetic (Vortical) effect, A polarization
- Y-N interactions in dense nuclear matter
 - hypernuclei

New issues: NICA White Paper, SQM proceedings

Physics targets for the exploration of first order phase transitions in the region of the QCD phase diagram accessible to NICA & FAIR and possible observable effects of a "mixed phase indicated in the release of the "NICA White Paper" as a Topical Issue of the **EPJ A** (July 2016).

JOURNAL OF PHYSICS: CONFERENCE SERIES The open access journal for conferences 15th International Conference on Strangeness in Quark Matter (SQM2015)

ISSN 1742-6588

Dubna, Russia 6–11 July 2015

Editors: David E. Alvarez-Castillo, David Blaschke, Vladimir Kekelidze, Victor Matveev and Alexander Sorin

Volume 668 2016

jpcs.iop.org

IOP Publishing

Strangeness Enhancement: SPS CERN, RHIC

Energy Dependence of Total Yields

more issues

a transition from a baryon-dominated to a meson-dominated media

less studied region

H. Oeschler et al. Physics Letters B615 (2005) 50-54.

J. Cleymans, SQM-2017.

Production ratios: hadrons with extra s-quark over others with just one NICA energies- sub threshold and above

Non-trivial energy dependence at very low energies:

- Surprisingly high Ξ yield, data clearly above model expectation
- Dramatic rise of $\phi/K-$ ratio towards low energies

C. Blume, SQM-2017

Strange baryon to pion ratios

D. Tlusty, SQM-2017

maximum net baryon density of GCE~ 8 GeV Randrup, Cleymans, PRC 74, 047901, 2006.

Event-by-event fluctuations

Colliding Energy Vs_{NN} (GeV)

more statistics & precise control of systematics are needed to explore this region A. Rustamov, SQM-2017

Vorticity & Λ Polarization

O. Rogachevsky, A. Sorin, O. Teryaev, Phys. Rev. C 82, 054910, 2010; M.Baznat, K.Gudima A.Sorin, O.Teryaev arXiv:1701.00923

STAR Coll.,arXiv:1701.06657

QCD matter at the **NICA** energies:

- high net baryon density density frontier;
- > maximum in K^+/π^+ ratio;
- > maximum in Λ/π ratio;
- transition from a Baryon dominated system

to a Meson dominated one;

- maximum of the A polarization;
- 1-st order transition & mixed phase creation;
- Critical Endpoint ?

Baryonic Matter at Nuclotron (BM@N)

experiment at Nuclotron extracted beams

GEM detecto

lanes – Gas lectron Multiplier

CPC - Cathode Pad Chambers

> DCH - drift chambers

> > mRPC - multi

resistive plate

ZDC - zero degree

alorimeter

Physics:

- strange / multi-strange hyperon and hypernuclei production at the threshold
- ✓ hadron femtoscopy
- ✓ short range correlations
- event-by event fluctuations
- ✓ in-medium modifications of strange & vector mesons in dense nuclear matter
- \checkmark electromagnetic probes, states decaying into γ , e (with ECAL)

BM@N status and milestones

BM@N configuration

		DAQ	GEM (CER	N) ST	TOF	Outer tracker
•	2016, IV :	basic config.	6 half planes	1 small plane	half config.	DCH
•	2017, III:	complete	10 h/pl.	2 s/pl.	basic	DCH
•	2019, I:	_"_	8-10 full pl.	2 s.,2 large pl.	complete	Straw+DCH

Deuteron / Carbon beam at BM@N

Si detector

GEM detectors for BM@N central tracker

GEM production at CERN PH-DT MRT workshop for BM@N

GENI's installed in BM@N mag	net				
	plan of pr	oduction	of tripl	e GEM's	
	chamber size	2015-16	2017	2018	2019
	66 x 41 cm ²	5			
	163 x 45 cm ²	2	6	6	
	200 x 45 cm ²			design	6

BM@N plans

year	2016	2017 FebMar.	2017 NovDec.	2019	2020 +	
beam	d (∱)	C, Ar	Kr	Au	Au, p	
maximum intensity, Hz	m , Hz 1M 1M		1M	1M	10M	
trig. rate, Hz	10k	10k	20k	20k	50k	
central tracker	ntral tracker 6 GEM 8 GEM half pl. half pl.		10 GEM8 GEMhalf pl.full pl.		12 GEM or 8+2Si	
expiment status techn. run		techn. run	physics run	physics stage 1	physics stage 2	

beam: E_{kin} = 3.5, 4.0, 4.4 AGeV

BM@N feasibility study

A.Zinchenko, V.Vasendina

Simulation: *UrQMD* & *DCM-QGSM, Au+Au* 4,5 AGeV

900 k central events 7,5M Ξ^- in 1 m, 20 kHz trigger

2,6M central events 8,5M ${}^{3}H_{\Lambda}$ in 1 m, 20 kHz trigger

MultiPurpose Detector (MPD)

Main target:

- study of hot and dense baryonic matter at the energy range of max net baryonic density

MPD Collaboration:

- JINR, Dubna;
- PI Az.AS, Baku, Azerbaijan;
- PPC BSU, Minsk, Belarus;
- WUT, Warsaw, Poland;
- INR, RAS, Russia;
- MEPhI, Moscow, Russia;
- ITEP, NC KI, Moscow, Russia;
- PNPI NC KI, Saint Petersburg, Russia;
- CPPT USTC, Hefei, China;
- Tsinghua University, Beijing, China;
- SS, HU, Huzhou, Republic of South Africa;

- DF, US, Mexico;
- ICN UNA; Mexico;
- DF, CIEA del I.P.N, Mexico;
- FCF-M UAS, Sinaloa, Mexico;
- FCF-MB UAP, Puebla, Mexico;
- CCTVal, Univ. Téch. Federico Santa

María, Chile.

MPD detector for Heavy-Ion Collisions @ NICA

General contractor: **ASG Superconductors,** Genova, Italy **Status:** *technical design – completed / close to completion; preparation for the mass production*

Magnet production: at ASG (Genova) & Vitkovice HM

production of RO Chambers

Fast Forward Detector - FFD (Cherenkov)

80 channels: lead converter + quartz radiator

- *TDR OK!*
- production close to completion
- tests of the trigger electronics & software at BM@N

time resolution < 50 ps

TOF Barrel: MRPC ready for mass production

module box housing 10 PRC's

28 modules280 MPRC's13 440 channels

MRPC

workshop for the MRPC mass-production

••

basic elements - NINO & HPTDC chips have been Purchased to produce read-out electronics for the TOF + reserve

Electromagnetic calorimeter: ECAL

common project with Tsinghua University, China

- Pb+Sc "Shashlyk"
- read-out: WLS fibers + MAPD
- ✤ L ~35 cm (~ 14 X₀)
- Segmentation (4x4 cm²),
- time resolution ~500 ps

prototype of a module

Inner Tracking System

ALICE/CERN & JINR – joint efforts for:

- manufacturing the ITS carbon fiber space frames for NICA (BM@N & MPD)& FAIR;
- construction of MAPS based ALICE type ITS

ITS MPD layout

#	R0	Active	N of	N of chips	active	number of
layer	mm	l, mm	staves	/ layer	area, cm2	pixel cells
1	24,4	542,4	12	216	889,9	113 246 208
2	42,0	542,4	22	264	1 087,7	138 412 032
3	60,0	542,4	32	384	1 582,1	201 326 592
4	107,	1477,5	12	1176	4 845,1	616 562 688
5	156,5	1477,5	18	1764	7 267,7	924 844 032
6	206,5	1477,5	24	2352	9 690,2	1 233 125 376
Total:				6156	25 362,7	3 227 516 928

workshop for detector assembly & test was put in operation in 2015

at the workshop

stand for beam tests of boards with sensors – *in operation*

FHCAL: for determination of reaction plane and centrality

responsibility of INR RAS

- 2-arm (left/right) calorimeter (at ~3.2 m from the IP)
- arm consists of 45 modules 15x15 cm² each
- module 42 lead/scintillator layers

FHCal coverage: $2.2 < |\eta| < 4.8$

Transverse granularity allows to measure:

- the reaction plane with the accuracy ~ 20⁰-30⁰
- the centrality with accuracy below **10%**.

modules production – in progress

MPD performance: hyperons

production of multi-strange hyperons to study the properties of the strongly interacting system and signal for QGP

- Central Au+Au @ 9A GeV (UrQMD), TPC+TOF barrel
- Realistic tracking and PID, secondary vertex reconstruction

Yields for 10 weeks of running

hyperon	Λ	$\overline{\Lambda}$	Ξ^-	Ξ^+	Ω^{-}	$\overline{\Omega}^+$
statistics	6 10 ⁹	7.3 10 ⁷	3 10 ⁷	1.6 10 ⁶	1.4 10 ⁶	3 10 ⁵

Hypernuclei @ MPD

Hypertritons

central Au+Au @ 5A GeV

(DCM-QGSM

10⁶ ³_Λ*H* are expected
 in 10 weeks

MPD performance for dileptons

Good probes to indicate medium modifications of spectral functions due to chiral symmetry restoration in A+A collisions; effect is proportional to baryon density

ECAL tasks

high acceptance & purity e/γ identification

- in-medium modifications in dilepton spectra
- thermal radiation from QGP
- bulk properties via study of spectra, flow & correlations of photons

Challenge for electron measurements in Au+Au at NICA: suppression of hadron background in the region:

 $M(e+e-) > 0,7 \text{ GeV/c}^2; \text{ pT } > 0.5 \text{ GeV/c}^2$

complementary to TOF

- Study dileptons under highest baryon density
- Unveil onset of excess?
- Critical point? First order phase transition?

IMR as thermometer

and LMR as chronometer

Rapp and Hees, PLB 753, 586 (2016)

 $m = 1 - 3 \text{ GeV/c^2}$

T given by inverse slope of the acceptance corrected mass spectrum in the IMR.

The thermal radiation integrated in the LMR m = 0.3 - 0.7 GeV/c² tracks the fireball lifetime quite well

Thermal yields at low energies

R. Rapp - private communication

 Cross sections decrease by almost two orders of magnitude between central Au+Au at 200 GeV and central Pb+Pb at 6.3 GeV at m=2 GeV/c²
 Challenging measurements
 Cross sections down by ~3 orders of magnitude between RHIC and NICA energies.

MPD detector at NICA

Estimate of dilepton yield in central Au+Au at $m = 2 - 2.5 \text{ GeV/c}^2$

√s_{NN} = 8 GeV 410 pairs/10 d

√s_{NN} = 6.3 GeV

Itzhak Tserruya

CPOD 2017, SBU, August 7-11, 2017 41

54 pairs/10 d

All systems at all energies studied show an enhancement of dileptons.

- A single model consistently reproduces the observed enhancement.
- The thermal radiation from the QGP dominates the dilepton excess in the IMR. Provides a measurement of the average temperature of the medium in the QGP phase.
- The thermal radiation from the HG dominates the dilepton excess in the LMR. Seems to track the medium lifetime.
- Emerging picture for the realization of CSR: the ρ meson broadens in the medium, the a₁ mass drops and becomes degenerate with the ρ.

Missing:

- * precise measurements of IMR at RHIC energies.
- v₂ measurements of the excess dileptons.

CPOD 2017, SBU, August 7-11, 2017

Flow performance: *v_n of charged hadrons (FHCal event plane)*

MEPhI/GSI: P. Parfenov, I. Svintsov I. Selyuzhenkov, A. Taranenko

Azimuthal flow coefficients: $v \downarrow n = (\cos[n(\varphi - \Psi \downarrow EP, 1)])/R \downarrow n \{\Psi \downarrow EP, 1\}$

- *R↓n {Ψ↓EP,1 }* resolution correction factor
- \varphi azimuthal angle of the produced particles
- Ψ↓EP,1 event plane angle

Centrality with TPC estimator

Good event plane resolution with FHCal Simulated v_n (true) and reconstructed v_n (reco) are in a good agreement

strategy in 2021-2023

energy and system size scan from 4 to 11 GeV in steps of 1-2 GeV

limitation by the accelerator:

- Iower luminosity
- extra reduction by 40% because of a larger beam diamond

Detector limitation

- **TPC** tracking: $|\eta| < 1.8$ (N points>10)
- **TOF** coverage: | η|<1.2
- **PID**: combined | η|<1.2, 0.1<pT<4 GeV/c,

limited in 1.2 < $|\eta|$ < 1.8 (only dE/dx)

- **ECAL** coverage : $|\eta| < 1.2$
- **FHCAL** coverage: 2.2<|η|<4.8
- **FFD** inside the TPC inner pipe

NICA schedule

	2015	2016	2017	2018	2019	2020	2021	2022	2023
Injection complex Lu-20 upgrade									
HI Source									
general development									
Booster									
Collider									
startup configuration desian configuration									
BM@N									
l stage Il stage									
MPD									
solenoid									
TPC, TOF, Ecal (barrel) Upgrade: end-caps +ITS									
Civil engineering									
MPD Hall									
SPD Hall									
collider tunnel									
HEBT Nuclotron-collider									
Cryogenic									
for Booster for Collider									

running time

Concluding remarks

Density frontier is less explored area and its study will lead to new interesting results

NICA complex has a potential for competitive research in the field of baryon rich matter

The construction of both detectors
BM@N & MPD is going close to the schedule

NICA is open for new participants

Welcome to join NICA!

Thank you for attention!