Directed flow from RHIC Beam Energy Scan Au+Au collisions using the STAR experiment

Subhash Singha (On behalf of STAR Collaboration)

Office of

Science

Outline

- ★ Directed flow in heavy-ion collisions
- ★ Beam energy scan (BES) program at RHIC
- ★ STAR detector at RHIC
- \star Results:

particles: π^{\pm} , K[±], K⁰, p, anti-p, A, anti-A and ϕ $\sqrt{s_{NN}} = 7.7$, 11.5, 19.6, 27, 39, 62.4 and 200 GeV

★ Summary and Outlook

BES-I at RHIC

J. Cleymans et al PRC 73, 034905 (2006)

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

Energy(GeV)	Events (M)	T (MeV)	μ _B (MeV)
7.7	4	140	422
11.5	12	152	316
14.5	18	156	264
19.6	36	160	206
27	70	162	156
39	130	164	112
62.4	67	165	73
200	350	166	25

BES program: To explore QCD phase diagram by varying beam energy

- Ap turn-off of QGP signatures
- Search for Critical Point
- Search for First-Order Phase Transition

Directed flow (v_1) is a key observable to search for the signature of a 1st order phase transition

STAR Detector

TPC

TOF

AAE

Uniform acceptance

BBC

Full azimuthal coverage
Excellent PID capability

Energy dependence dv₁/dy

Minimum in net-proton dv₁/dy with double sign change

Softening of EoS (?)

Energy dependence dv₁/dy with models

→ Present models can not reproduce the trend observed in data
 → More theoretical progress is needed in this direction

Energy dependence dv₁/dy with models

PRL 112, 162301 (2014) (STAR Coll)

- → Standard JAM (hadronic description): Close to data at 7.7 GeV Overestimate data at 11.5 and 19.6 GeV
- → JAM-attractive (modeling of softening effect): Close to data at 11.5 and 19.6 GeV

Interesting physics around 10 – 20 GeV

Evidence for softening of EoS (?)

→ System reaches maximum baryonic density

At high baryon (net-baryon) density, one might expect a repulsive force

We do see a sign change $\sqrt{s_{NN}} = 10 - 15 \text{ GeV}$

Light hadron v₁

New measurements

- Complimentary to p data
- Probe kaon-nucleon potential
 - Mass close to p, but it is a vector meson Minimally affected by late-stage hadronic interactions

- → Study roles of produced and transported quarks
- → Test hypotheses about transport of initial-state quarks
- → Test constituent quark coalescence hypothesis

Rapidity dependence of v₁

 \rightarrow v₁-slope extracted by linear fitting (|y| < 0.8)

 \rightarrow Poor statistics for particles (e.g. for anti- Λ , ϕ) does not allow stable cubic fit

Energy dependence of dv₁/dy

 \rightarrow (dv₁/dy)_{π, K, Ks}⁰ ~ Negative

 \rightarrow (dv₁/dy)_{Ks}⁰ ~ lies in between K[±]

Energy dependence of dv₁/dy

$$\rightarrow$$
 (dv₁/dy)_p ~ (dv₁/dy)_A

$$\rightarrow$$
 (dv₁/dy)_{anti-p} ~ (dv₁/dy)_{anti-}

- → Both baryons show a sign change around √s_{NN} = 10 - 15 GeV
- \rightarrow Anti-baryons remain negative
- → Both net baryons indicate double sign change

Energy dependence of dv1/dy

$$\rightarrow$$
 (dv₁/dy)_{anti-p} ~ (dv₁/dy)_{anti-\lambda} ~ (dv₁/dy)_{\phi}

→ Particles (anti-p, anti-Λ, φ) with all the constituent quarks produced from collisions show similar behavior for √s_{NN} > 14.5 GeV

	quark content
anti-A	uds
anti-p	uud
φ	SS

Energy dependence of dv1/dy

Energy dependence of dv₁/dy

Test assumption that deconfined quarks acquire v_n , then form hadrons. This assumption leads to v_n sum-rule:

 $(v_n)_{hadron} = \Sigma(v_n)_{\text{constituent quarks}}$

Using produced quarks:

Sum rule holds for 11.5 – 200 GeV, while strong deviation from assumption at 7.7 GeV

Energy dependence of dv₁/dy

Using produced quarks:

 \rightarrow Sum rule holds for 11.5 – 200 GeV, while strong deviation from assumption at 7.7 GeV

Using net-particle v₁ to enrich transported quark content:

 \rightarrow First test of sum rule \rightarrow Second test of sum rule

 \rightarrow Produced quarks consistent with the expected behavior at BES energies

 \rightarrow Transported quarks difficult to separate, excepts in the limit of high and low beam energy

BES-II at RHIC

iTPC (-1.7 < $|\eta|$ < 1.7)

• Extended coverage

Better dE/dx resolution

EPD (2.1 < $|\eta| < 5.1$)

- Improved EP resolution
- Centrality determination independent of TPC

BES-II at RHIC

Summary

 \rightarrow (dv₁/dy)_p ~ (dv₁/dy)_A

- \rightarrow (dv₁/dy)_{anti-p} ~ (dv₁/dy)_{anti-\lambda} ~ (dv₁/dy)_{\phi}
- → $(dv_1/dy)_{net-p} \sim (dv_1/dy)_{net-\Lambda}$ both changes sign at $\sqrt{s_{NN}} < 14.5$ GeV

 $\frac{(dv_1/dy)_{net-p}}{for \sqrt{s_{NN}} > 14.5 \text{ GeV}}$

 v_1 results are used to test quark coalescence:

Any measurements are consistent with the particles being formed via statistical coalescence of constituent quarks

Outlook: Charm quark v₁ as a probe for initial B field

→ Model predicted sizable v₁ for charm quarks induced by initial electromagnetic field

Magnitude of v_1 depends on balance between E and B fields

 \rightarrow Sign of dv₁/dy opposite for charm and anti-charm quarks

Measurement of D⁰ (anti-D⁰) v₁

- → First order event plane using ZDC-SMD
- \rightarrow v₁ signal significant at forward η
- → Large η-gap reduces non-flow effects (|η|_{ZDC-SMD}>6.4)

 \rightarrow Analysis of D⁰ (anti-D⁰) v₁ utilizing HFT and ZDC is underway

Stay tuned for more results

Thank you

Back up slides

STAR Detector

$z = \pm 18.25 \text{ m}$ $\theta < 2 \text{ mrad}$

- 1st order event plane estimated using BBC (7.7 - 39 GeV) ZDC (62.4, 200 GeV)
- v1 signal significant at forward rapidity
- Large η gap with TPC reduces non-flow effects

JAM Calculation

Energy dependence dv₁/dy with models

- None of the models explains the data
- Systematics associated with the models is quite large (~ 2 orders of magnitude bigger than experimental errors!)

HFT performance in D⁰ reconstruction

Heavy Flavor Tracker:

- \rightarrow Excellent pointing resolution
- \rightarrow Allows topological reconstruction for heavy flavor particles

$D^0 v_2$ and πv_1 using HFT

