

Hydrodynamic modeling of RHIC BES

Chun Shen Brookhaven National Lab

Aug. 8, 2017, Stony Brook Unversity

CPOD 2017

Exploring the phases of QCD

Exploring the phases of QCD

- Event-by-event fluctuating initial conditions
- (3+1)-d dissipative hydrodynamic modelling of the QGP
- Microscopic description for hadronic phase

Exploring the phases of QCD

 Event-by-event fluctuating initial conditions

Glauber-LEXUS

 (3+1)-d dissipative hydrodynamic modelling of the QGP

MUSIC

 Microscopic description for hadronic phase

UrQMD/JAM

When to start hydrodynamics?

Go beyond the Bjorken approximation

• The finite widths of the colliding nuclei are taken into account

Go beyond the Bjorken approximation

• The finite widths of the colliding nuclei are taken into account

The interaction zone is not point like

C. Shen, B. Schenke, in preparation

 Collision time and 3D spatial position are determined for every binary collision

C. Shen, B. Schenke, in preparation

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

C. Shen, B. Schenke, in preparation

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041 [hep-ph]

C. Shen, B. Schenke, in preparation

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041 [hep-ph]

C. Shen, B. Schenke, in preparation

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041 [hep-ph]

C. Shen, B. Schenke, in preparation

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041 [hep-ph]

C. Shen, B. Schenke, in preparation

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041 [hep-ph]

C. Shen, B. Schenke, in preparation

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041 [hep-ph]

C. Shen, B. Schenke, in preparation

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041 [hep-ph]

C. Shen, B. Schenke, in preparation

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041 [hep-ph]

C. Shen, B. Schenke, in preparation

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041 [hep-ph]

C. Shen, B. Schenke, in preparation

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041 [hep-ph]

C. Shen, B. Schenke, in preparation

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041 [hep-ph]

C. Shen, B. Schenke, in preparation

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041 [hep-ph]

C. Shen, B. Schenke, in preparation

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041 [hep-ph]

A 3D MCGlauber model

A 3D MCGlauber model

A 3D MCGlauber model

Introducing longitudinal fluctuations

• Sample valence quarks from the incoming participants $y_q = \operatorname{arcsinh}\left(x_q\sqrt{\frac{s}{4m_q^2}-1}\right)$ $y_q = \log\left(\frac{x\sqrt{s}}{2m_q}\right)$

Introducing longitudinal fluctuations

- Sample valence quarks from the incoming participants $y_q = \operatorname{arcsinh}\left(x_q\sqrt{\frac{s}{4m_q^2}-1}\right)$ $y_q = \log\left(\frac{x\sqrt{s}}{2m_q}\right)$
- Sample the rapidity loss according to the LEXUS model

Net baryon rapidity distribution

C. Shen, B. Schenke, in preparation

 Different rapidity fluctuation results different net baryon rapidity distribution

Net baryon rapidity distribution

- Different rapidity fluctuation results different net baryon rapidity distribution
- The valence quark + LEXUS model provides a reasonable net baryon rapidity distribution compared to the RHIC BES data

• The size of the $a_{n,m}$ coefficient can quantify the mount of longitudinal fluctuations

C. Shen, B. Schenke, in preparation

 The a₁₁ coefficient for dE/dy decreases at high collision energy because the system becomes more boostinvariant

- The a₁₁ coefficient for dE/dy decreases at high collision energy because the system becomes more boostinvariant
- The a_{11} coefficient for dN_B/dy increases at high collision energy because less net baryon number at mid-rapidity

 The initial eccentricities decorrelate along η direction faster with more longitudinal fluctuation and at lower collision energy

Hydrodynamics with sources

Energy-momentum current and net baryon density are feed into hydrodynamic simulation as source terms

$$\partial_{\mu}T^{\mu\nu} = J^{\nu}_{\text{source}}$$
$$\partial_{\mu}J^{\mu} = \rho_{\text{source}}$$

where

 $J_{\text{source}}^{\nu} = \delta e u^{\nu} + (e + P) \delta u^{\nu}$ $\delta u^{\nu} = \frac{\Delta_{\mu}^{\nu} J_{\text{source}}^{\mu}}{e + P}$ heats up the system accelerates the flow velocity ρ_{source} dopes baryon charges into the system

 Source terms are smeared with Gaussians in space and time

Hydrodynamical evolution with sources

energy density

Progress in hydrodynamics

Dissipative hydrodynamics

Energy momentum tensor

$$T^{\mu\nu} = e u^{\mu} u^{\nu} - (P + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu} \qquad \Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu} u^{\nu}$$

Conserved currents

$$J^{\mu} = n u^{\mu} + q^{\mu}$$

Equations of motion

$$\begin{array}{l} \partial_{\mu}T^{\mu\nu} = 0 \\ \partial_{\mu}J^{\mu} = 0 \end{array} + P(e,n) \end{array}$$

Dissipative quantities are evolved with 2nd order Israel-Stewart type of equations

At Navier-Stokes limit,

$$\pi^{\mu\nu} \sim 2\eta \nabla^{\langle \mu} u^{\nu\rangle} \quad \Pi \sim -\zeta \partial_{\mu} u^{\mu} \quad q^{\mu} \sim \kappa \nabla^{\mu} \frac{\mu}{T}$$
$$\nabla^{\mu} = \Delta^{\mu\nu} \partial_{\mu}$$

EoS at finite μ_B

High temperature:

- Lattice QCD EoS up to $\mathcal{O}(\mu_B^4)$

Low temperature:

• Glued with hadron resonance gas EoS

Transport coefficients

Chun Shen

CPOD 2017

19/24

Effects of net baryon diffusion on particle yields

 More net baryon numbers are transported to mid-rapidity with a larger diffusion constant

Constraints on net baryon diffusion and initial condition

Effects of net baryon diffusion on particle yields

Constraints on net baryon diffusion and initial condition

CPOD 2017

Effects of net baryon diffusion on pid spectra

 Net baryon diffusion results a flatter spectra for anti-proton compared to proton's

	$C_{B} = 0.0$	$C_B = 0.4$	$C_{B} = 1.2$
$\langle p_{\perp} angle^{ar{p}} - \langle p_{\perp} angle^{p}$ (GeV)	0.046	0.091	0.158
CPOD 2017			

22/24

Chun Shen

Effects of hadronic afterburner on pid spectra

- Hadronic afterburner harden pion spectra at high p⊤
- Heavy baryon spectra are largely affected

hadronic afterburner is essential for baryon spectra

Effects of hadronic afterburner on pid spectra

- Hadronic afterburner harden pion spectra a
- Heavy baryon spectra are largely affected

hadronic afterburner is essential for baryon spectra

rescatterings

Conclusion

 We develop a dynamical initialization model to study the early time evolution of heavy-ion collisions at the BES energies

full (3+1)-d event-by-event with net baryon current

• With a hybrid approach, we identified a few experiment observables that could constrain the net baryon diffusion

$$dN^{p-\bar{p}}/dy \qquad \langle p_{\perp} \rangle^{\bar{p}} - \langle p_{\perp} \rangle^{p}$$

 Future combining with the Bayesian analysis will help us to constrain the initial state and transport coefficients of the QGP in a baryon-rich environment

Transport coefficients

R. Rougemont, R. Critelli, J. Noronha-Hostler, J. Noronha and C. Ratti, Phys. Rev. D 96, 014032 (2017)

The holographic Einstein-Maxwell-Dilation (EMD) model is fit to the lattice results on thermodynamic quantities at $\mu_B = 0$

Predictions are made for thermodynamic variables at finite μ_B and for the temperature and μ_B dependence of various transport coefficients

Net baryon number distribution

Convert to particles

Heavy-ion collisions at BES energies...

RHIC energies, species combinations and luminosities (Run-1 to 16)

picture taken from http://www.agsrhichome.bnl.gov/RHIC/Runs/

Effects of hadronic afterburner on particle yields

- Hadronic afterburner has little effect on charged hadron pseudo-rapidity distribution
- Net proton rapidity profile is slightly flatter after hadronic scatterings

more sensitive to early stage dynamics

Effects of net baryon diffusion on particle yields

Constraints on net baryon diffusion and initial condition

 $\sqrt{s_{\rm NN}} = 19.6 \,{\rm GeV}$

Hadronic afterburner harden pion spectra at high p⊤

- Hadronic afterburner harden pion spectra at high p⊤
- Heavy baryon spectra are largely affected

hadronic afterburner is essential for baryon spectra

- Hadronic afterburner harden pion spectra at high p⊤
- Heavy baryon spectra are largely affected

hadronic afterburner is essential for baryon spectra

- Hadronic afterburner harden pion spectra a
- Heavy baryon spectra are largely affected

hadronic afterburner is essential for baryon spectra

rescatterings

Effects of net baryon diffusion on pid spectra

• To study the net baryon diffusion effects on transverse observables, we first tune the initial longitudinal profiles to product the same $dN^{p-\bar{p}}/dy$

Effects of net baryon diffusion on pid spectra

• To study the net baryon diffusion effects on transverse observables, we first tune the initial longitudinal profiles to product the same $dN^{p-\bar{p}}/dy$

Effects of net baryon diffusion on pid spectra

 Net baryon diffusion results a flatter spectra for anti-proton compared to proton's

Momentum anisotropy keeps developing in the UrQMD phase

hadronic afterburner is essential

- Momentum anisotropy keeps developing in the UrQMD phase
- Low p_T proton v₂ is blue shifted because of the pion "wind"

hadronic afterburner is essential

Effects of net baryon diffusion on pid v₂

 Hadronic scatterings wash out most of the diffusion effects on pid v₂

• Transport simulations give $v_2(\bar{p}) > v_2(p)$, which is opposite compared to the STAR data

mean field effects in the hadronic phase?

 Late stage hadronic scatterings correct the v₂(p_T) ordering in our hybrid simulations

more statistics is needed

$$e_{\rm sw} = 0.3 \,{\rm GeV/fm}^3$$

 Late stage hadronic scatterings correct the v₂(p_T) ordering in our hybrid simulations

more statistics is needed

- Late stage hadronic scatterings correct the v₂(p_T) ordering in our hybrid simulations
- A larger net baryon diffusion constant results a larger $v_2(p) v_2(\bar{p})$

more statistics is needed

Fireball evolution in the QCD phase diagram

Fluctuating

Smooth

 In the fluctuating case, the hydrodynamic fluid cells are scattered on the phase diagram

A challenge to the search of critical point

Diffusion of is essential

$$E\frac{dN_{i}}{d^{3}p} = \frac{g_{i}}{(2\pi)^{3}} \int p^{\mu} d^{3}\sigma_{\mu}(x)(f_{0}(x,p) + \delta f(x,p))$$
$$f_{0}^{i}(x,p) = \frac{1}{e^{(E-b_{i}\mu_{B}(x))/T(x)} \pm 1}$$
$$\delta f_{0}^{i}(x,p) = f_{0}^{i}(x,p)(1 \pm f_{0}^{i}(x,p))\left(\frac{n_{B}}{e+\mathcal{P}} - \frac{b_{i}}{E}\right)\frac{p \cdot q}{\hat{\kappa}}$$

- With diffusion, δf is essential to ensure net baryon number conservation

Diffusion of is essential

$$E\frac{dN_{i}}{d^{3}p} = \frac{g_{i}}{(2\pi)^{3}} \int p^{\mu} d^{3}\sigma_{\mu}(x)(f_{0}(x,p) + \delta f(x,p))$$
$$f_{0}^{i}(x,p) = \frac{1}{e^{(E-b_{i}\mu_{B}(x))/T(x)} \pm 1}$$
$$\delta f_{0}^{i}(x,p) = f_{0}^{i}(x,p)(1 \pm f_{0}^{i}(x,p))\left(\frac{n_{B}}{e+\mathcal{P}} - \frac{b_{i}}{E}\right)\frac{p \cdot q}{\hat{\kappa}}$$

$$\begin{split} N^B - N^{\bar{B}} &= \int d^3 \sigma_\mu \sum \frac{g_i}{(2\pi)^3} \int_p p^\mu \left[(f_0^B(x, p) \\ &= \int d^3 \sigma_\mu (n_B u^\mu + q^\mu) \\ &\partial_\mu (n_B u^\mu + q^\mu) = 0 \end{split}$$

• With diffusion, δf is essential to e conservation

Conservation laws (net baryon number and total energy) are checked at every time step; the relative violation is below 1x10⁻⁵

(x,p))

Baryon diffusion constant

$$N_Q^{\mu} = \sum_{i=1}^N g_i Q_i \int dK_i k_i^{\mu} f_k^i,$$

Relaxation time approximation

$$q_B^{\mu} = \sum_{i=1}^{N} g_i b_i \int dK_i k_i^{\langle \mu \rangle} \delta f_k^i$$

$$q_B^{\mu} = \kappa_B \nabla^{\mu} \alpha_B = \tau_R \hat{\kappa}_B \nabla^{\mu} \alpha_B$$

$$\hat{\kappa}_B = \frac{1}{3} \Delta_{\mu\nu} \sum_{i=1}^N g_i b_i \int dK_i k_i^{\nu} k_i^{\alpha} f_{ik}^{(0)} \tilde{f}_{ik}^{(0)} \left[\frac{n_B}{e+P} - \frac{b_i}{E_{ik}} \right]$$

$$\kappa_B = \frac{C_B}{T} n_B \left(\frac{1}{3} \coth(\alpha_B) - \frac{n_B T}{e + \mathcal{P}} \right).$$

Initialize MUSIC with 3D density profiles

MC-Glauber model:

Rapidity dependence of particle yield

- Full (3+1)-d simulations with net baryon current and its diffusion
- Initial longitudinal profiles are tuned to reproduce the measured (pseudo)-rapidity distributions for charged hadrons and net protons

Effects of net baryon diffusion on pid v₂

 Identified particles v₂ are more sensitive to shear out-of-equilibrium corrections

Compass for the QCD phase diagram

Effects of net baryon diffusion on particle yields

- The diffusion δf changes the net proton number
- Larger diffusion constant results a ~30 MeV larger averaged chemical potential on the switching hyper-surface; It reduces the standard deviation of μ_B by ~25%

mapping the QCD phase diagram in precision