Critical endpoint of 4-flavor QCD on the lattice

Hiroshi Ohno^{1,2}

in collaboration with

Y. Kuramashi^{1,3}, Y. Nakamura³ and S. Takeda⁴ ¹CCS, University of Tsukuba, ²Brookhaven National Laboratory, ³RIKEN AICS, ⁴Kanazawa University

> CPOD 2017 Stony Brook University, NY, USA August 9, 2017

Plan of this talk

- Introduction
 - Order of phase transitions of QCD at $\mu = 0$
 - An issue in 3-flavor QCD on the lattice
 - Motivation for 4-flavor QCD
- Methods
 - Finite size scaling analysis & the kurtosis intersection method
- Numerical results
- Summary & outlook

Expected order of phase transitions of QCD at $\mu = 0$

R. D. Pisarski and F. Wilczek, PRD 29 (1984) 338

- Quenched QCD (top-right corner) - 1st order
- 2-flavor at m = 0 (top-left corner)
- 1^{st} order if U(1)_A is effectively restored
- 2nd order if U(1)_A is broken
- S. Sharma's talk - Different lattice results Wed. @16:00
- 3-flavor at *m* = 0 (bottom-left corner)

- 1st order

- Physical point
- crossover
- many lattice results suggested

H. Ohno **CPOD 2017**

Columbia plot

Critical endpoint in 3-flavor QCD

- Phase transition of 3-flavor QCD
- expected to be 1st order at m = 0
- 2nd order critical endpoint at $m = m_E$
- crossover m > m_E
- The location of m_E is still not conclusive!

Lattice studies so far

Action	Nt	m ^ε _π	Ref.
Staggered, standard	4	290 MeV	Karsch et al '01, Liao '01
Staggered, p4	4	67 MeV	Karsch et al '04
Staggered, standard	6	150 MeV	de Forcrand et al '07
Staggered, HISQ	6	< 50 MeV	Ding et al '17
Staggered, stout	4-6	~ 0	Varnhorst '14
Wilson, standard	4	< 670 MeV	Iwasaki et al, '96
Wilson, clover	6-8	300 MeV	Nakamura et al, '14
Wilson, clover	4-10	< 170 MeV	Jin et al, '17

$m_{\rm E}$ gets smaller for finer lattices and more improved actions There is clear difference between staggered and Wilson results

A staggered result in 4-flavor QCD

- 4-flavor QCD
- 1st order phase transition
 is expected at *m* = 0
- Stronger phase transition
 compared to N_f = 3
 - \rightarrow larger $m_{\rm E}$
 - \rightarrow less expensive computation
- No rooting issue
- A good analogue to understand
 3-flavor results

P. de Forcrand and M. D'Elia, PoS LATTICE2016 (2017) 081

- Similar behavior as N_f = 3
- quite small m_{π}^{E} in the continuum limit

→ important to crosscheck also with Wilson-type quarks

n_{pi} /T_c

Our simulation setup (1)

- Iwasaki gauge + O(a)-improved Wilson quarks with 4 degenerate flavors
 - C_{sw} has been non-perturbatively determined in N_{f} = 4
- Three different cutoffs towards the continuum limit
 - $N_{\rm t} = 4, 6 \text{ and } 8$
 - $N_t = 8$ results are still very preliminary
- Three different β values at each N_{t}
 - β = 1.61, 1.62 and 1.64 at N_t = 4
 - β = 1.67, 1.68 and 1.69 at $N_{\rm t}$ = 6
 - β = 1.66, 1.675 and 1.68 at N_t = 8
- Five different κ values at each β
- Zero temperature simulations also have been done on a $16^3 \times 32$ lattice for scale setting (t_0 and m_{PS})

Our simulation setup (2)

- Chiral condensate and its cumulants
 - Up to 4th order, i.e. susceptibility, skewness and kurtosis
 - Traces, e.g. TrD^{-n} for n = 1, 2, 3 and 4, measured with 10 noises
- Multi-ensemble reweighting for κ
 - to improve signal
- The kurtosis intersection method to find critical endpoints

Finite size scaling analysis (1)

For a scaling factor b = L , the free energy scales as t : reduced temperature

$$F(t,h,L^{-1}) = F(tL^{y_t},hL^{y_h},1)$$

 h : external magnetic field
 L : lattice size

For simplicity thinking about a purely magnetic observable $\,\mathcal{M}\,$

Susceptibility scales as

$$\chi_{\mathcal{M}}(t,0,L^{-1}) = L^{-d} \frac{\partial^2}{\partial h^2} F(t,0,L^{-1})$$
$$= L^{-d+2y_h} \frac{\partial^2}{\partial h^2} F(tL^{y_t},0,1)$$

 $\longrightarrow \chi_{\mathcal{M}}(0,0,L^{-1}) \propto L^{\gamma/\nu}$

$$\gamma/\nu = -d + 2y_h$$

H. Ohno CPOD 2017

Finite size scaling analysis (2)

Similarly, kurtosis scales as

$$K_{\mathrm{M}}(t,0,L^{-1}) = \frac{\frac{\partial^4}{\partial h^4}F(t,0,L^{-1})}{\left[\frac{\partial^2}{\partial h^2}F(t,0,L^{-1})\right]^2}$$
$$= \frac{\frac{\partial^4}{\partial h^4}F(tL^{y_t},0,1)}{\left[\frac{\partial^2}{\partial h^2}F(tL^{y_t},0,1)\right]^2}$$

For small tL^{y_t}

$$K_{\rm M}(t,0,L^{-1}) = \frac{\frac{\partial^4}{\partial h^4} F(0,0,1)}{\left[\frac{\partial^2}{\partial h^2} F(0,0,1)\right]^2} + c_K t L^{1/\nu} + O((tL^{1/\nu})^2)$$

This means that there is no volume dependence at t = 0 $1/ u = y_t$

For general observable there is still volume dependence even at t =0. However this can be irrelevant for sufficiently large volume

H. Ohno CPOD 2017

Kurtosis intersection method

Location of the critical endpoint can be found by looking for a point where kurtosis has no volume dependence. → Searching for an intersection point of lines of kurtosis minima in various volumes

An example of cumulants at $N_t = 4$

H. Ohno CPOD 2017

An example of cumulants at $N_t = 6$

H. Ohno CPOD 2017

An example of cumulants at $N_t = 8$

H. Ohno CPOD 2017

Results of kurtosis intersections

 $K_{\rm E}$ slightly deviates from that of Z₂ at $N_{\rm t}$ = 4 and 8 while it is consistent with Z₂ at $N_{\rm t}$ = 6. v = 0.45(4), 0.63(13) and 0.71(33) at $N_{\rm t}$ = 4, 6 and 8, respectively. Cf) v = 0.630 for Z₂

H. Ohno CPOD 2017

Further universality check with susceptibilities

H. Ohno CPOD 2017

Critical endpoints in $N_{\rm f}$ = 4 QCD

H. Ohno CPOD 2017

Cutoff dependence of critical endpoints

*N*_f = 3 results: X.-Y. Jin *et al.*, arXiv:1706.01178 [hep-lat]

 $N_{\rm f}$ = 4 results have similar cutoff dependence as those of $N_{\rm f}$ = 3. m_{PS,E} in $N_{\rm f}$ = 4 is larger than that in $N_{\rm f}$ = 3 as expected. Further studies at larger $N_{\rm t}$ (on finer lattices) are needed for the reliable continuum limit.

H. Ohno CPOD 2017

Comparison with staggered quark results

Similarly to the N_f = 3 case, there are different scaling behaviors to the continuum limit between the Wilson and staggered quarks in N_f = 4.

Summary

- Critical endpoints in $N_f = 4$ QCD has been studied.
- Larger $m_{PS,E}$ has been observed in $N_f = 4$ than in $N_f = 3$.
- We found a similar scaling behavior to $a \rightarrow 0$ as shown in $N_f = 3$.
- The scaling behavior is also different from that of the staggered quarks.

H. Ohno CPOD 2017

Future plan

- Further studies are needed for the reliable continuum limit.
- More statistics at $N_t = 8$
- Simulations on finer lattices

End

Backup slides

Cumulants at $N_t = 4$, $\beta = 1.61$

H. Ohno CPOD 2017

Cumulants at $N_t = 4$, $\beta = 1.64$

H. Ohno CPOD 2017

Cumulants at $N_t = 6$, $\beta = 1.67$

H. Ohno CPOD 2017

Cumulants at $N_t = 6$, $\beta = 1.69$

H. Ohno CPOD 2017

Cumulants at $N_t = 8$, $\beta = 1.66$

H. Ohno CPOD 2017

Cumulants at $N_t = 8$, $\beta = 1.68$

H. Ohno CPOD 2017