

Beam-energy dependence of the viscous damping of anisotropic flow

Niseem Magdy Stony Brook University For the STAR Collaboration niseem.abdelrahman@stonybrook.edu

QCD Phase Diagram

Strong interest in the theoretical calculations which span a broad (μ_B, T) domain.

QCD Phase Diagram

Strong interest in the theoretical calculations which span a broad (μ_B, T) domain.

> The η/s values are tuned in model calculations to describe the experimental flow data at different collision energies

Strong interest in the experimental measurements which span a broad (μ_B , T) domain.

Investigate signatures for the first-order phase transition

STAR PRL 112, 162 301 (2014)

Strong interest in the experimental measurements which span a broad (μ_B , T) domain.

 Investigate signatures for the first-order phase transition

STAR PRL 112, 162 301 (2014)

Search for critical fluctuations

STAR PRL 112, 032 302 (2014)

Comprehensive set of flow measurements are important to study;

✓ Differentiate between initial-state models

□ Initial-state eccentricity & its fluctuations

Comprehensive set of flow measurements are important to study;

✓ Differentiate between initial-state models
 □ Initial-state eccentricity & its fluctuations
 ✓ Transport coefficients (^η/_s, etc)
 □ Pin down the temperature dependence of the transport coefficients

Comprehensive set of flow measurements are important to study;

Differentiate between initial-state models
 Initial-state eccentricity & its fluctuations

✓ Transport coefficients ($^{\eta}/_{s}$, etc)

Pin down the temperature dependence of the transport
 coefficients

 ✓ Detailed flow measurements could aid ongoing efforts to search for the critical end point(CEP)

Asymmetry in initial geometry \rightarrow Final state momentum anisotropy (flow)

Asymmetry in initial geometry \rightarrow Final state momentum anisotropy (flow)

► The flow harmonic coefficients v_n are influenced by eccentricities (ε_n) [and their fluctuations], the speed of sound $c_s(\mu_B, T)$, and transport coefficients $\left(\frac{\eta}{s}, \frac{\zeta}{s}, ...\right)$

Datasets

Collected data for Au+Au at different $\sqrt{s_{NN}}$ by STAR detector at RHIC will be presented

STAR Detector at RHIC

TPC detector mainly get used in the current analysis

Azimuthal anisotropy measurements

Correlation function

Two-particle correlation function $Cr(\Delta \varphi = \varphi_a - \varphi_b)$,

 $Cr(\Delta \varphi) = dN/d\Delta \varphi$ and $v_n^{ab} = \frac{\sum_{\Delta \varphi} Cr(\Delta \varphi) \cos(n \Delta \varphi)}{\sum_{\Delta \varphi} Cr(\Delta \varphi)}$

Short-range non-flow effect get reduced using $|\Delta \eta| > 0.7$ cut

Long – range

Momentum Conservation Long-range non-flow suppression

$$v_1^{ab} = v_1^a v_1^b + \delta_{long}$$
 $n = 1$

$$v_{11}(p_T^a, p_T^b) = v_1^{even}(p_T^a)v_1^{even}(p_T^b) - C p_T^a p_T^b \qquad (C \propto (< p_T^2 > < Mult >)^{-1})$$

 v_{11} in Eq(1) represents NxM matrix which we fit with N+1 parameters

arXiv:1203.0931 arXiv:1203.3410 Long – range

Conservation

Long-range non-flow suppression

 $v_1^{ab} = v_1^a v_1^b + \delta_{long} \quad n = 1$

arXiv:1203.0931 arXiv:1203.3410 arXiv:1208.1874 arXiv:1208.1887 arXiv:1211.7162

$$v_{11}(p_T^a, p_T^b) = v_1^{even}(p_T^a)v_1^{even}(p_T^b) - C p_T^a p_T^b \qquad 1 \\ c \propto (\langle p_T^2 \rangle \langle Mult \rangle)^{-1}$$

Long – range

Conservation

Long-range non-flow suppression

 $v_1^{ab} = v_1^a v_1^b + \delta_{long} \quad n = 1$

arXiv¹²⁰³ 0931 arXiv:1203.3410 arXiv:1208.1874 arXiv:1208.1887 arXiv:1211.7162

$$v_{11}(p_T^a, p_T^b) = v_1^{even}(p_T^a)v_1^{even}(p_T^b) - C p_T^a p_T^b \qquad 1 \\ C \propto (\langle p_T^2 \rangle \langle Mult \rangle)^{-1}$$

For different beam energies;

 $\sim v_1^{even}$ increases weakly as collisions

become more peripheral

Pseudorapidity dependence of $v_{n>1}$

 $|\eta| < 1$ and $|\Delta \eta| > 0.7$

The extracted $v_{n>1}(\eta)$ at all BES energies

Transverse momentum dependence of $v_{n>1}$ $|\eta| < 1 \text{ and } |\Delta \eta| > 0.7$ The extracted $v_{n>1}(p_T)$ at all BES energies

> v_n(p_T) has similar trends for different beam energies.
 > v_n(p_T) decreases with harmonic order n.

Centrality dependence of $v_{n>1}$ The extracted $v_{n>1}$ (Centrality) at all BES energies

 $|v_1^{even}|$ shows similar values to v_3 at $0.4 < p_T < 0.7 (GeV/c)$

Beam-energy dependence of v_1^{even} $|\eta| < 1 \text{ and } |\Delta \eta| > 0.7$ $\mathbf{v}_{11}(p_T^a, p_T^t) = v_1^{even}(p_T^a)v_1^{even}(p_T^t) - C p_T^a p_T^t$

The extracted v_1^{even} vs $\sqrt{s_{NN}}$ at 0%-10% centrality

> $|v_1^{even}|$ shows similar values to v_3 at $0.4 < p_T < 0.7(GeV/c)$ > $\varepsilon_3 > \varepsilon_1$

✓ v_3 has larger viscous damping effect than v_1^{even}

Beam-energy dependence of $v_{n>1}$

The extracted $v_{n>1}$ vs $\sqrt{s_{NN}}$ at 0-40% centrality

> $v_n(\sqrt{s_{NN}})$ shows a monotonic increase with beam-energy. > $v_n(\sqrt{s_{NN}})$ decreases with harmonic order n (viscous effects).

Comprehensive set of flow measurements were studied for Au+Au collision system at all BES energies with one set of cuts.

For n > 1;

✓ v_n decreases with harmonic order n.

\succ For n = 1;

Comprehensive set of flow measurements were studied for Au+Au collision system at all BES energies with one set of cuts.

For n > 1;

✓ v_n decreases with harmonic order n.

 $\checkmark v_n(p_T, \eta, \text{Centrality})$ indicates a similar trend for different beam energies.

For n = 1;

Comprehensive set of flow measurements were studied for Au+Au collision system at all BES energies with one set of cuts.

- For n > 1;
 - ✓ v_n decreases with harmonic order n.
 - $\checkmark v_n(p_T, \eta, \text{Centrality})$ indicates a similar trend for different beam energies.
 - ✓ $v_n(\sqrt{s_{NN}})$ shows a monotonic increase with beam-energy.

For n = 1;

Comprehensive set of flow measurements were studied for Au+Au collision system at all BES energies with one set of cuts.

- For n > 1;
 - ✓ v_n decreases with harmonic order n.
 - $\checkmark v_n(p_T, \eta, \text{Centrality})$ indicates a similar trend for different beam energies.
 - ✓ $v_n(\sqrt{s_{NN}})$ shows a monotonic increase with beam-energy.

 \succ For n = 1;

✓ Similar characteristic behavior of $v_1^{even}(p_T)$ at all energies.

Comprehensive set of flow measurements were studied for Au+Au collision system at all BES energies with one set of cuts.

- For n > 1;
 - ✓ v_n decreases with harmonic order n.
 - $\checkmark v_n(p_T, \eta, \text{Centrality})$ indicates a similar trend for different beam energies.
 - ✓ $v_n(\sqrt{s_{NN}})$ shows a monotonic increase with beam-energy.

 \succ For n = 1;

- ✓ Similar characteristic behavior of $v_1^{even}(p_T)$ at all energies.
- ✓ Momentum conservation parameter *C* scales as $(Mult)^{-1}$

Comprehensive set of flow measurements were studied for Au+Au collision system at all BES energies with one set of cuts.

- For n > 1;
 - ✓ v_n decreases with harmonic order n.
 - $\checkmark v_n(p_T, \eta, \text{Centrality})$ indicates a similar trend for different beam energies.
 - ✓ $v_n(\sqrt{s_{NN}})$ shows a monotonic increase with beam-energy.

 \succ For n = 1;

- ✓ Similar characteristic behavior of $v_1^{even}(p_T)$ at all energies.
- ✓ Momentum conservation parameter *C* scales as $(Mult)^{-1}$
- ✓ $|v_1^{even}|$ shows similar values to v_3 (larger viscous effect for v_3)

Comprehensive set of flow measurements were studied for Au+Au collision system at all BES energies with one set of cuts.

- For n > 1;
 - ✓ v_n decreases with harmonic order n.
 - $\checkmark v_n(p_T, \eta, \text{Centrality})$ indicates a similar trend for different beam energies.
 - ✓ $v_n(\sqrt{s_{NN}})$ shows a monotonic increase with beam-energy.

 \succ For n = 1;

- ✓ Similar characteristic behavior of $v_1^{even}(p_T)$ at all energies.
- ✓ Momentum conservation parameter *C* scales as $(Mult)^{-1}$
- ✓ $|v_1^{even}|$ shows similar values to v_3 (larger viscous effect for v_3)

More information could be extracted from v_n measurements via the acoustic ansatz

PRC 84, 034908 (2011) P. Staig and E. Shuryak.

PRC 88, 044915 (2013) E. Shuryak and I. Zahed arXiv:1305.3341 Roy A. Lacey, et al. arXiv:1601.06001

Roy A. Lacey, et al.

 v_n measurements are sensitive to system shape (ε_n) , size (RT) and transport coefficients $(\frac{\eta}{s}, \frac{\zeta}{s}, ...)$.

PRC 84, 034908 (2011) P. Staig and E. Shuryak.

PRC 88, 044915 (2013) E. Shuryak and I. Zahed Roy A. Lacey, et al.

arXiv:1601.06001 Roy A. Lacey, et al.

arXiv:1305.3341

- \succ v_n measurements are sensitive to system shape (ε_n) , size (RT) and transport coefficients $(\frac{\eta}{s}, \frac{\zeta}{s}, ...)$. Acoustic ansatz
 - ✓ Sound attenuation in the viscous matter reduces the magnitude of v_n .

PRC 84, 034908 (2011) P. Staig and E. Shuryak. arXiv:1305.3341 Roy A. Lacey, et al.

i

PRC 88, 044915 (2013) E. Shuryak and I. Zahed Roy A. La

arXiv:1601.06001 Roy A. Lacey, et al.

 \succ v_n measurements are sensitive to system shape (ε_n) , size (RT) and transport coefficients $(\frac{\eta}{s}, \frac{\zeta}{s}, ...)$. Acoustic ansatz

✓ Sound attenuation in the viscous matter reduces the magnitude of v_n . Anisotropic flow attenuation,

$$\frac{v_n}{\varepsilon_n} \propto e^{-\beta n^2}$$
, $\beta \propto \frac{\eta}{s} \frac{1}{RT}$

From macroscopic entropy considerations

 $S \sim (RT)^3 \sim \langle N_{Ch} \rangle$ then $RT \sim \langle N_{Ch} \rangle^{\frac{1}{3}}$

PRC 84, 034908 (2011) P. Staig and E. Shuryak.

1.9

1.8

1.7

 $\left< N_{ch} \right>^{1/3}$

arXiv:1305.3341 Roy A. Lacey, et al.

PRC 88, 044915 (2013) E. Shuryak and I. Zahed arXiv:1601.06001 Roy A. Lacey, et al.

► v_n measurements are sensitive to system shape (ε_n) , size (RT) and transport coefficients $(\frac{\eta}{s}, \frac{\zeta}{s}, ...)$. Acoustic ansatz

✓ Sound attenuation in the viscous matter reduces the magnitude of v_n . Anisotropic flow attenuation,

$$\frac{v_n}{\varepsilon_n} \propto e^{-\beta n^2}$$
, $\beta \propto \frac{\eta}{s} \frac{1}{RT}$

i

From macroscopic entropy considerations

$$S \sim (RT)^3 \sim \langle N_{Ch} \rangle$$
 then $RT \sim \langle N_{Ch} \rangle^{\frac{1}{3}}$

• We can rewrite Eq(i)

$$n\left(\frac{v_n}{\varepsilon_n}\right) \propto -n^2(\beta') \langle N_{Ch} \rangle^{-\frac{1}{3}}$$
 where $\beta' \propto \frac{\eta}{\delta}$

> At the same centrality we have

$$\binom{n}{\sqrt{2}} \propto -(n-2) \left(\beta'\right) \left\langle N_{Ch} \right\rangle^{-\frac{1}{3}}$$
 where $\beta' = A \frac{\eta}{s}$

where A is constant

PRC 84, 034908 (2011) P. Staig and E. Shuryak. arXiv:1305.3341 Roy A. Lacey, et al.

PRC 88, 044915 (2013) E. Shuryak and I. Zahed arXiv:1601.06001 Roy A. Lacey, et al.

 $\succ v_n$ measurements are sensitive to system shape (ε_n) , size (RT) and transport coefficients $(\frac{\eta}{s}, \frac{\zeta}{s}, ...)$. Acoustic ansatz

✓ Sound attenuation in the viscous matter reduces the magnitude of v_n . Anisotropic flow attenuation,

$$\frac{v_n}{\varepsilon_n} \propto e^{-\beta n^2}$$
, $\beta \propto \frac{\eta}{s} \frac{1}{RT}$

From macroscopic entropy considerations

$$S \sim (RT)^3 \sim \langle N_{Ch} \rangle$$
 then $RT \sim \langle N_{Ch} \rangle^{\frac{1}{3}}$

• We can rewrite Eq(i)

$$n\left(\frac{v_n}{\varepsilon_n}\right) \propto -n^2(\beta') \langle N_{Ch} \rangle^{-\frac{1}{3}}$$
 where $\beta' \propto \frac{\eta}{\delta}$

 $\left< N_{ch} \right>^{1/3}$

➤ At the same centrality we have

 $v_{2'}$

$$\ln\left(\frac{\nu_n^{1/n}}{\nu_2^{1/2}}\right) \propto -(n-2) \left(\beta'\right) \left\langle N_{Ch} \right\rangle^{-\frac{1}{3}} \text{ where } \beta' = A \frac{\eta}{s}$$

where A is constant
$$\ln\left(\frac{\nu_n^{1/n}}{1/2}\right) \left\langle N_{Ch} \right\rangle^{\frac{1}{3}} (n-2)^{-1} = \beta''$$

Viscous coefficient

The viscous coefficient shows a non-monotonic behavior with beam-energy

Comprehensive set of STAR measurements presented for $v_n(p_T, \eta, \text{Centrality and } \sqrt{s_{NN}})$ for Au+Au collisions.

For v_n :

✓ $v_n(p_T, \eta, \text{Centrality})$ indicates a similar trend for different beam energies.

Comprehensive set of STAR measurements presented for $v_n(p_T, \eta, \text{Centrality and } \sqrt{s_{NN}})$ for Au+Au collisions.

For v_n :

✓ v_n(p_T, η, Centrality) indicates a similar trend for different beam energies.
 ✓ Momentum conservation parameter *C* scales as ⟨*Mult*⟩⁻¹

Comprehensive set of STAR measurements presented for $v_n(p_T, \eta, \text{Centrality and } \sqrt{s_{NN}})$ for Au+Au collisions.

For v_n :

- ✓ v_n(p_T, η, Centrality) indicates a similar trend for different beam energies.
 ✓ Momentum conservation parameter *C* scales as ⟨*Mult*⟩⁻¹
- ✓ $v_n(\sqrt{s_{NN}})$ shows a monotonic increase with beam-energy.

Comprehensive set of STAR measurements presented for $v_n(p_T, \eta, \text{Centrality and } \sqrt{s_{NN}})$ for Au+Au collisions.

For v_n :

- ✓ $v_n(p_T, \eta, \text{Centrality})$ indicates a similar trend for different beam energies.
- ✓ Momentum conservation parameter *C* scales as $(Mult)^{-1}$
- ✓ $v_n(\sqrt{s_{NN}})$ shows a monotonic increase with beam-energy.
- ✓ $|v_1^{even}|$ shows similar values to v_3 (larger viscous effect for v_3)

Comprehensive set of STAR measurements presented for $v_n(p_T, \eta, \text{Centrality and } \sqrt{s_{NN}})$ for Au+Au collisions.

For v_n :

- ✓ $v_n(p_T, \eta, \text{Centrality})$ indicates a similar trend for different beam energies.
- ✓ Momentum conservation parameter *C* scales as $(Mult)^{-1}$
- ✓ $v_n(\sqrt{s_{NN}})$ shows a monotonic increase with beam-energy.
- ✓ $|v_1^{even}|$ shows similar values to v_3 (larger viscous effect for v_3)

The viscous coefficient $(A\frac{\eta}{s})$, is non-monotonic versus the collision-energy with an apparent minimum near ~15 GeV.

