# **Overview HADES**

#### The (Net)-Baryon rich Side of the Phase Diagram

# CPOD 2017

Critical Point and Onset of Deconfinement

Charles B. Wang Center - Stony Brook University August 7-11, 2017

#### Manuel Lorenz for the HADES Collaboration







### Outline

HADES and the (Net)-Baryon rich Side of the Phase Diagram

Au+Au @ √s<sub>NN</sub>= 2.4 GeV (Sub-Threshold) Strangeness Production Virtual Photon Emission Freeze-out Parameters

 $\pi$  + p/A  $\sqrt{s}$ =1.7-2.0 GeV

Summary and Future



Au+Au √s<sub>NN</sub>=2.4 GeV

Large stopping and interpenetration times  $\rightarrow$  Baryon dominated system

Clear hierarchy in hadron yields:  $p \approx 100, \pi \approx 10, K^+ \approx 10^{-2}, K^- \approx 10^{-4}$   Sub-Threshold Strangeness Production: Strong kinematical suppression of direct K<sup>-</sup>

NN→NYK<sup>+</sup>  $\sqrt{s_{NN}}$ = 2.55 GeV NN→NNK<sup>+</sup>K<sup>-</sup>  $\sqrt{s_{NN}}$ = 2.86 GeV

Strong coupling of K<sup>-</sup> to baryons strangeness exchange reactions e.g.  $\pi Y \rightarrow NK^-$ 

 Virtual Photon Emission: Vector meson spectral functions modified by coupling to baryons

ρ

- Flow Anisotropies: <sup>n</sup> Preferred out-of-plane emission due to shadowing B.Kardan Wednesday 17:<sup>00</sup>-17:<sup>30</sup>
- Net-Proton Fluctuations: No Antiprotons, additional terms when correcting for volume fluctuations R. Holzman Thursday 11:<sup>00</sup>-11:<sup>30</sup>



Au+Au √s<sub>NN</sub>=2.4 GeV

Large stopping and interpenetration times  $\rightarrow$  Baryon dominated system

Clear hierarchy in hadron yields:  $p \approx 100, \pi \approx 10, K^+ \approx 10^{-2}, K^- \approx 10^{-4}$ 



Fast detector: up to 50 kHz trigger rate Large acceptance: Full azimuthal and polar angle coverage of  $\Theta = 18^{\circ} - 85^{\circ}$ 

2.1x10<sup>9</sup> events analyzed



**HADES:** Au+Au  $\sqrt{s_{NN}}=2.4$  GeV Large stopping and interpenetration times  $\rightarrow$  Baryon dominated system

Clear hierarchy in hadron yields:  $p \approx 100, \pi \approx 10, K^+ \approx 10^{-2}, K^- \approx 10^{-4}$ 



Fast detector: up to 50 kHz trigger rate Large acceptance: Full azimuthal and polar angle coverage of  $\Theta = 18^{\circ} - 85^{\circ}$ 

2.1x10<sup>9</sup> events analyzed



![](_page_6_Figure_1.jpeg)

![](_page_7_Figure_1.jpeg)

Unique observable:

Not produced in binary NN collisions at  $\sqrt{s_{NN}}$ = 2.4 GeV, micro-canonical ensemble Z(E,N,V).

 $NN \rightarrow NYK^+: \sqrt{s_{NN}} = 2.55 \text{ GeV}, NN \rightarrow NNK^+K^-: \sqrt{s_{NN}} = 2.86 \text{ GeV}$  (strong K<sup>-</sup> suppression).

Energy must be provided from the system.

![](_page_9_Picture_5.jpeg)

Unique observable:

Not produced in binary NN collisions at  $\sqrt{s_{NN}}$ = 2.4 GeV, micro-canonical ensemble Z(E,N,V).

NN→NYK<sup>+</sup>:  $\sqrt{s_{NN}}$ = 2.55 GeV, NN→NNK<sup>+</sup>K<sup>-</sup>:  $\sqrt{s_{NN}}$ = 2.86 GeV (strong K<sup>-</sup> suppression).

Energy must be provided from the system. Accumulation of energy in multistep processes (still isolated NN collisions).

![](_page_10_Figure_5.jpeg)

Unique observable:

Not produced in binary NN collisions at  $\sqrt{s_{NN}}$ = 2.4 GeV, micro-canonical ensemble Z(E,N,V).

NN→NYK<sup>+</sup>:  $\sqrt{s_{NN}}$ = 2.55 GeV, NN→NNK<sup>+</sup>K<sup>-</sup>:  $\sqrt{s_{NN}}$ = 2.86 GeV (strong K<sup>-</sup> suppression).

Energy must be provided from the system. Accumulation of energy in multistep processes (still isolated NN collisions). Or surrounding matter acts like a heat bath, canonical ensemble Z(T,N,V).

![](_page_11_Picture_5.jpeg)

Unique observable:

Not produced in binary NN collisions at  $\sqrt{s_{NN}}$ = 2.4 GeV, micro-canonical ensemble Z(E,N,V).

NN→NYK<sup>+</sup>:  $\sqrt{s_{NN}}$ = 2.55 GeV, NN→NNK<sup>+</sup>K<sup>-:</sup>  $\sqrt{s_{NN}}$ = 2.86 GeV (strong K<sup>-</sup> suppression).

Energy must be provided from the system. Accumulation of energy in multistep processes (still isolated NN collisions). Or surrounding matter acts like a heat bath, canonical ensemble Z(T,N,V).

![](_page_12_Picture_5.jpeg)

Unique observable:

Not produced in binary NN collisions at  $\sqrt{s_{NN}}= 2.4$  GeV, micro-canonical ensemble Z(E,N,V). NN $\rightarrow$ NYK<sup>+</sup>:  $\sqrt{s_{NN}}= 2.55$  GeV, NN $\rightarrow$ NNK<sup>+</sup>K<sup>-:</sup>  $\sqrt{s_{NN}}= 2.86$  GeV (strong K<sup>-</sup> suppression).

Energy must be provided from the system. Accumulation of energy in multistep processes (still isolated NN collisions). Or surrounding matter acts like a heat bath, canonical ensemble Z(T,N,V)

![](_page_13_Picture_4.jpeg)

![](_page_14_Figure_1.jpeg)

https://arxiv.org/pdf/1703.0<u>8418.pdf</u>

reactions ??"

![](_page_15_Figure_1.jpeg)

 $\Phi/K^{-}$  ratio constant at high energies

https://arxiv.org/pdf/1703.08418.pdf

![](_page_16_Figure_1.jpeg)

 $\Phi/K^{-}$  ratio constant at high energies

https://arxiv.org/pdf/1703.08418.pdf

![](_page_17_Figure_1.jpeg)

Increased in Au+Au collisions at low energies  $\rightarrow$  25% of K<sup>-</sup> result from  $\Phi$  decays!

 $\Phi$  feed-down can explain lower inverse slope parameter of K<sup>-</sup> spectrum (T<sub>eff</sub> = 84 ± 6 MeV) in comparison to the one of K<sup>+</sup> (T<sub>eff</sub> = 104 ± 1 MeV)

https://arxiv.org/pdf/1703.08418.pdf

![](_page_18_Figure_1.jpeg)

Increased in Au+Au collisions at low energies  $\rightarrow$  25% of K<sup>-</sup> result from  $\Phi$  decays!

 $\Phi$  feed-down can explain lower inverse slope parameter of K<sup>-</sup> spectrum (T<sub>eff</sub> = 84 ± 6 MeV) in comparison to the one of K<sup>+</sup> (T<sub>eff</sub> = 104 ± 1 MeV)

→No indication for sequential K<sup>+</sup>K<sup>-</sup> freeze-out if K<sup>-</sup> spectrum is corrected for feed-down. (Sub-Threshold) Strangeness Production: the Complete Picture

![](_page_19_Figure_1.jpeg)

- Strange particle yields rise stronger than linear with  $\langle A_{part} \rangle$  (M ~  $\langle A_{part} \rangle^{\alpha}$ )

- Universal <A<sub>part</sub>> dependence of strangeness production

→ Hierarchy in production threshold not reflected

 $N \rightarrow NYK^+$   $\sqrt{s_{NN}} = 2.55 \text{ GeV}$  $NN \rightarrow NNK^+K^ \sqrt{s_{NN}} = 2.86 \text{ GeV}$ 

H. Schuldes, T. Scheib

#### (Sub-Threshold) Strangeness Production: the Complete Picture

![](_page_20_Figure_1.jpeg)

- Strange particle yields rise stronger than linear with  $<A_{part}> (M \sim <A_{part}>^{\alpha})$ 

- Universal <A<sub>part</sub>> dependence of strangeness production

→ Hierarchy in production threshold not reflected

N→NYK<sup>+</sup>  $\sqrt{s_{NN}}$ = 2.55 GeV NN→NNK<sup>+</sup>K<sup>-</sup>  $\sqrt{s_{NN}}$ = 2.86 GeV

H. Schuldes, T. Scheib

![](_page_22_Figure_1.jpeg)

First measurement of e<sup>+</sup>e<sup>-</sup> for a heavy system in this energy regime.

Normalized to the number of  $\pi^0$ .

Strong excess yield (0.15<M<0.7 GeV/c<sup>2</sup>) above e<sup>+</sup>e<sup>-</sup> cocktail components of meson decays at freeze-out and elementary baryonic reference observed.

 $\rightarrow$  Medium radiation

![](_page_23_Figure_1.jpeg)

First measurement of e⁺e⁻ for a heavy system in this energy regime.

Normalized to the number of  $\pi^0$ .

Strong excess yield  $(0.15 < M < 0.7 GeV/c^2)$  above e<sup>+</sup>e<sup>-</sup> cocktail components of meson decays at freeze-out and elementary baryonic reference observed.

 $\rightarrow$  Medium radiation

Isolation of the excess by subtracting the elementary reference and the  $\eta$ -contribution.

Acceptance corrected excess yield.

![](_page_24_Figure_1.jpeg)

First measurement of e<sup>+</sup>e<sup>-</sup> for a heavy system in this energy regime.

Normalized to the number of  $\pi^0$ .

Strong excess yield (0.15<M<0.7 GeV/c<sup>2</sup>) above e<sup>+</sup>e<sup>-</sup> cocktail components of meson decays at freeze-out and elementary baryonic reference observed.

 $\rightarrow$  Medium radiation

Isolation of the excess by subtracting the elementary reference and the  $\eta$ -contribution.

Acceptance corrected excess yield.

Exponentially falling spectrum,  $\rightarrow$  extraction of source temperature

#### **Centrality Dependence of Virtual Photon Emission**

#### Dileptons: 0.3<M<0.7 GeV/c<sup>2</sup>

**Strange Particles** 

![](_page_25_Figure_3.jpeg)

#### **Centrality Dependence of Virtual Photon Emission**

10<sup>-3</sup>

10

 $10^{-5}$ 

90100

<Apart>

Mult /

#### Dileptons: 0.3<M<0.7 GeV/c<sup>2</sup>

#### Strange Particles

 $\alpha = 1.35 \pm 0.07$  preliminary

200

 $\pi x0.005$ 

 $\Lambda$ 

 $K^+$ 

**K**x40

фx40

300

<A<sub>part</sub>>

400

![](_page_26_Figure_3.jpeg)

Universal <A<sub>part</sub>> dependence

### Macroscopic Description of Hadron Production

Particle production from a homogeneous source.

Strangeness canonical ensemble Parameter: T,  $\mu_B$ , R<sub>c</sub>, R.

Additional parameter to suppress strangeness needed ( $R_C < R_v$ ).

Fits at low beam energies based on limited number of particle species.

THERMUS V2.3: S. Wheaton, J.Cleymans Comput.Phys.Commun.180:84-106,2009

![](_page_27_Figure_6.jpeg)

Hadron yields described by 4 parameters (T,  $\mu_B$ , R, R<sub>c</sub>)

# Chemical vs. Kinetic Freeze-out

![](_page_28_Figure_1.jpeg)

Freeze-out point at higher T and  $\mu_B$  than expected from parameterization: under investigation

 $T_{chem}$  no longer in conflict with  $T_{kin}.$  What about  $\Phi$  and  $\Lambda?$ 

## Freeze-out parameter systematics

![](_page_29_Figure_1.jpeg)

#### Cocktail components of hadron spectra from resonance decays: K-

![](_page_30_Figure_1.jpeg)

#### Pion induced reactions on nuclei: $\phi$ production

![](_page_31_Figure_1.jpeg)

![](_page_31_Figure_2.jpeg)

![](_page_31_Figure_3.jpeg)

#### Pion induced reactions on nuclei: resonances

![](_page_32_Figure_1.jpeg)

### Summary

#### **Sub-Threshold Strangeness Production**

No indication for sequential  $K^+K^-$  freeze-out when correcting for  $\phi$  feed-down. Universal  $\langle A_{part} \rangle$  dependence of strange hadrons.

#### **Virtual Photon Emission**

Strong e<sup>+</sup>e<sup>-</sup> excess over reference. Exponentially falling spectrum. Similar rise with <A<sub>part</sub>> as observed for strange hadrons.

#### **Freeze-out Parameter**

 $T_{kin}$ =62±10 MeV and < $\beta_r$ >=0.36±0.04 extracted from blast wave fit.  $T_{chem}$ =68±2 MeV extracted from statistical model fit.  $T_{ee}$ =71±4 MeV extracted from virtual photon spectrum.

#### **Pion induced reactions**

Clean tool to study  $\phi$  in nuclear matter and to constrain resonance contributions to particle spectra.

![](_page_33_Figure_9.jpeg)

### The Future

#### FAIR Phase-0:

 $\pi$  + p/A  $\sqrt{s}$ =1.7-1.9 GeV: resonance contributions and EM-structure Ag+Ag@1.65 A GeV: Multi-strange hadrons & intermediate mass dileptons

#### SIS100:

Continue physics program at higher energies (focus on elementary and light systems)

#### Submitted to PAC on June 19, 2017

![](_page_34_Picture_6.jpeg)

Proposal for experiments at SIS18 during FAIR Phase-0

The HADES Collaboration

![](_page_34_Picture_9.jpeg)

Properties of hadron resonances and baryon rich matter

![](_page_34_Picture_11.jpeg)

### The HADES collaboration

![](_page_35_Picture_1.jpeg)

Thank you for your attention!