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Outline

Instanton-dyons and their ensembles in QCD-like
theories

analytic (mean field) approach for dense ensemble
(T<Tc) (1503.03058, 1503.09148 with Lui and Zahed)

numerical studies at all densities: deconfinement
(1504.03341 with Larsen) and chiral restoration (Nc=Nf=2)

both transitions were found to be strongly influenced
by (flavor dependent) quark periodicity phases
(imaginary chem.potetials) that it nearly uniquely fixes
the mechanism (1605.07474 with Larsen)



1998
nstantons => Nc selfdual dyons

(KVBLL, Pierre van Baal Iegacy)

<P> nonzero Polyakov line
=> <A 4>=v is non-zero
=> new solutions

Instanton liquid Dyonic plasma
3+1d long range

Instanton- R calorons=M+L
d)’OnS in M —+| - v are
L|-|- 27T —v
SU(2) ol - |4 |2 — o E and M neutral

TABLE I: The charges and the mass (in units of 87%/e*T) for 4 SU(2) dyons.



. holonomy pameters

the color circle A4(00) — 2rTdiag| )

00) = 2wl dlag( 1, U2, ..., LN ).

for any Nc ! B T

pr < po < ...opn < pp 1 ZMmZO-
m=1
N

Um = Um+1 — Hm, Z Um = 1.
m=1

M dyon
at trivial field mu_i->0 gets massless

all nu’s fill the circle
sum of dyon masses
makes full instanton



Interacting Ensemble of the Instanton-dyons
and Deconfinement Phase Transition in the SU(2) Gauge Theory

Rasmus Larsen and Edward Shuryak
Department of Physics and Astronomy, Stony Brook University, Stony Brook NY 11794-3800, USA

Instanton-dyons, also known as instanton-monopoles or instanton-quarks, are topological con-
stituents of the instantons at nonzero temperature and holonomy. We perform numerical simula-
tions of the ensemble of interacting dyons for the SU(2) pure gauge theory. Unlike previous studies,
we focus on back reaction on the holonomy and the issue of confinement. We calculate the free
energy as a function of the holonomy and the dyon densities, using standard Metropolis Monte
Carlo and integration over parameter methods. We observe that as the temperature decreases and
the dyon density grows, its minimum indeed moves from small holonomy to the value corresponding
to confinement. We then report various parameters of the self-consistent ensembles as a function of
temperature, and investigate the role of inter-particle correlations.

Like in [12], instead of toroidal box with periodic
boundary conditions in all coordinates, our simulations
have been done on a S3 sphere (in four dimensions), to
simplify treatment of the long range Coulombic forces.

The partition function we simulate depends on several
parameters, changed from one simulation set to another.
Those include (i) the number of the dyons Ny, Ny ; (ii) p 3
the radius of the S® sphere r; (iii) the action parameter Gross-Pisarski-Yaffe

S; (iv) the value of the holonomy v, (v) the value of the pertu rbative term

Debye mass M p; (vi) the auxiliary factor A, which is then

integrated over as explained in section IV. o +free dyOnS+ interaction

arXiv:1504.03341v1 [hep-ph] 13 Apr 2015

Larsen’s
talk at parallel session

v =0 18 the trivial case

tuesday afternoon v =1/2 confining




free energy vs holonomy
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v =0 1s the trivial case So, as a function of the dyon density

. the potential changes its shape
V — 1/ 2 confining and confinement takes place




show only the “selfconsistent” input set.
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FIG. 6: Self-consistent value of the holonomy v (upper plot)
and Polyakov line (lower plot) as a function of action S (lower
scales), which is related to T'/T. (upper scales). The error bars
are estimates based on the fluctuations of the numerical data.

confining phase is symmetric
NL=Nwm
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Light Quarks in the Screened Dyon-Anti-Dyon Coulomb Liquid Model II

Yizhuang Liu,* Edward Shuryak,” and Ismail Zahed!
Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA

(Dated: April 1, 2015)

We discuss an extension of the dyon-anti-dyon liquid model that includes light quarks in the dense
center symmetric Coulomb phase. In this work, like in our previous one, we use the simplest color
SU(2) group. We start with a single fermion flavor Ny = 1 and explicitly map the theory onto a
3-dimensional quantum effective theory with a fermion that is only Uy (1) symmetric. We use it to
show that the dense center symmetric plasma develops, in the mean field approximation, a nonzero
chiral condensate, although the ensuing Goldstone mode is massive due to the U4(1) axial-anomaly.
We estimate the chiral condensate and o, meson masses for Ny = 1. We then extend our analysis
to several flavors Ny > 1 and colors N. > 2 and show that center symmetry and spontaneous chiral
symmetry breaking disappear simultaneously when x = N;y/N. > 2 in the dense plasma phase.
A reorganization of the dense plasma phase into a gas of dyon-antidyon molecules restores chiral
symmetry, but may preserve center symmetry in the linearized approximation. We estimate the

corresponding critical temperature.

The main issue discussed in this paper is the behavior
(pairing or collectivization) of the fermionic zero modes
into what is called in the literature the “Zero Mode Zone”
(ZMZ). The approximations used in its description fol-
lows closely the construction, developed for instantons
and described in detail in refs [14]. The fermionic deter-
minant can be viewed as a sum of closed fermionic loops
connecting all dyons and antidyons. Each link — or hop-
ping — between L-dyons and L-anti-dyons is described by
the elements of the “hopping chiral matrix” T

e =( g, ) 9

with dimensionality (K + K)?. Each of the entries in
T;; is a “hopping amplitude” for a fermion between an
L-dyon and an L-anti-dyon, defined via the zero mode ¢p
of the dyon and the zero mode ¢p (of opposite chirality)
of the anti-dyon

Tij=T(x; —y;) = /d4z ol (2 = 2:)i(v - 9)p (2 — yj10)

d3p M 2(19) _np

(2m)3 p2 + M3(p) 4

- gap egn for lambda

12}
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FIG. 1: The momentum dependent quark constituent mass
TM (p)/ X\ versus p/T.



chiral symmetry breaking for ditferent Nf

Nc=2 Nf=1 solution
IS studied In detall

For general = N¢/N,, the saddle point equation in
Y. of (85) gives

5\ z—1
> =\ Zwa(vy) (88)

after the shift —i\ — X\ and \ = N¢A. With this in mind
and inserting (88) into (85) yields

O\
d3p A2 5

Critical Nf/Nc=2 for mean field treatment

The effective potential (89) has different shapes de-
pending on the ratio of the number of flavors to the
number of colors z. Let us explain that in details for
four cases:

(i) If z < 1 the first term in (89) has a positive coef-
ficient and a negative power, so it is decreasing at small
A. At large value of X\ the second term is growing as InA\.
Thus a minimum in between must exist. This minimum
is the physical solution we are after.

(ii) If 1 < = < 2 the coefficient of the first term is
negative but its power is now positive. So again there is
a decrease at small A\ and thus a minimum.

(iif) If z > 2 the leading behavior at small X is now
dominated by the second term which goes as A2 with
positive coefficient. One may check that the potential is
monotonously increasing for any A with no extremum.
There is no gap equation, which means chiral symmetry
cannot be broken in the mean-field approximation.

(iv) If = 2 there are two different contributions of
opposite sign to order A2 at small A\. An extremum forms
only if the following condition is met

[armo <mim-o(x) @

Using the exact form (13) and the solution to the gap
equation at T = Ty, we have

3
/ (;lj)’gT?(p) - (91)

which shows that (90) is in general upset, and this case
does not possess a minimum.

lattice: 0:3,N4 broken,
NF=8 probably not




Ordinary Nc=Nf=5 QCD

P without a trace
Is a diagonal unitary matrix
=> Nc phases (red dots)

quark periodicity
phases => Nf blue dots
are in this case all =pi
quarks are fermions

as a consequence,
out of 5 types of instanton-dyons
only L has zero modes



still Nc=Nf=5 but with
“most democratic” arrangement
ZN-symmetric QCD

H. Kouno, Y. Sakai, T. Makiyama, K. Tokunaga, T.
Sasaki and M. Yahiro, J. Phys. G 39, 085010 (2012).

the idea: quarks can be
not fermions but “anyons”

quark periodicity
phases => Nf blue dots
are in this case

flavor-dependent
(but no connection to

instanton-dyons in
this work, but PNJL)

In this case each dyon type has
one zero mode
with one quark flavor
=>N Iindependent topological ZMZ’s!



Instanton-dyon Ensemble with two Dynamical Quarks: the Chiral Symmetry Breaking

Rasmus Larsen and Edward Shuryak
Department of Physics and Astronomy, Stony Brook University, Stony Brook NY 1179/-3800, USA

This is the second paper of the series aimed at understanding of the ensemble of the instanton-
dyons, now with two flavors of light dynamical quarks. The partition function is appended by
the fermionic factor, (detT)™s and Dirac eigenvalue spectra at small values are derived from the
numerical simulation of 64 dyons. Those spectra show clear chiral symmetry breaking pattern at
high dyon density. Within current accuracy, the confinement and chiral transitions occur at very
similar densities.

vvvvvvvv

high density
broken chiral sym

| < &@b > | — 7T,0()\))\—>O,m—>0,V—>oo

collectivized ;
zero mode zone T

dip near zero is ; |
a finite size effect - 0z 03

FIG. 1: Eigenvalue distribution for ny; = nr = 0.47, Np = 2
massless fermions.

low density
chiral sym unbroken
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FIG. 2: Eigenvalue distribution for nys = nr = 0.08, Np = 2
massless fermions.
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We find that the required condition for [ |
both the chiral symmetry breaking L B
and confinement is basically SR »
sufficiently high density of the dyons. s  E b ‘;
0.25 b i v ;
S _ 87‘(2/92 5 6 7 " 8 9

Furthermore,
unlike in the case of pure gauge theory
without quarks,
the holonomy dependence
on the density is smoother.

We don’t observe holonomy vanishing,
and also the densities
of the M and L type dyons
does not become equal,
even at the lowest T we studied.

FIG. 9: (Color online) Parameterization A: The density of
the M (blue circles) and L (red squares) dyons as a function
of action S = 87%/g* or temperature T/T..
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FIG. 10: (Color online) Parameterization A: The Polyakov
loop P (blue circles) and the chiral condensate ¥ (red squares)
as a function of action S = 87%/g* or temperature T/T.. A
clear rise is seen around S = 7.5 for the chiral condensate.
> is scaled by 0.2. The black constant line corresponds to
the upper limit of X under the assumption that the entire
eigenvalue distribution belong to the almost-zero-mode zone,
i.e. the maximum of Xs.



Instanton-dyon Ensembles III: Exotic Quark Flavors

Rasmus Larsen and Edward Shuryak

confining phase
gets much more
robust:

transition strong first order
mixed phase (flat F)
is observed at medium densities
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chiral symmetry breaking is dramatically different

u=sM

< au >#< dd >

d=>L
""""""""" i Z> oco
! Il has symmetric and asymmetric phases
_ b { ; yet apparently no chiral symmetry
5] : I ; restorationatany T

5 i

1 B } I _
of ol ) | the usual QCD

‘ | has chiral

s e 7 s e T restoration

FIG. 6: Chiral condensate generated by u quarks and L dyons Why can the quark condensate
(red squares) and d quarks interacting with M dyons (blue

circles) as a function of action S, for the Zs-symmetric model.
For comparison we also show the results from II for the usual
QCD-like model with N. = Ny = 2 by black triangles.

be much larger for Z2?




the first lattice study of Z3 QCD

Lattice study on QCD-like theory with exact center symmetry
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explanation: three flavors of quarks
0

interact with three different " liquids” | | |
of M1,M2,L instanton-dyons! 3



Summary

Instanton-dyon ensembles:
in QCD-like theories the deconfinement
and chiral transitions

are driven just by sufficiently large dyon density
=> quasicritical Tdec and Tchir are about the same

But this changes in theories with
unusual fermions.
Nontrivial flavor holonomies
( phases in boundary conditions)

dramatically change both deconfinement
and chiral transitions:
interesting dependences seen.
It is an excellent tool to fix the microscopic mechanism

Yet direct identification

of the instanton-dyons
on the lattice,
study of their density etc are
still badly needed




