

Properties of Chiral magnetohydrodynamics

Yuji Hirono

Anomalous transport effects

$$oldsymbol{j}_{ ext{anom}} = \kappa_B oldsymbol{B} + \kappa_\omega oldsymbol{\omega}$$

$$oldsymbol{j}_{5, ext{anom}} = \xi_B oldsymbol{B} + \xi_\omega oldsymbol{\omega}$$

Chiral magnetic effect requires chirality imbalance

Signature of chiral symmetry restoration

Axial charge generation from color fields

$$\partial_{\mu}j_{5}^{\mu} = \frac{g^{2}}{16\pi^{2}}\boldsymbol{E}^{a}\cdot\boldsymbol{B}^{a}$$

Theoretical frameworks

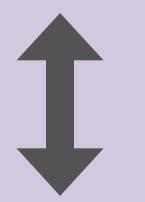
Anomalous hydrodynamics

[Son-Surowka 2009; ...]

Chiral kinetic theory

[Son-Yamamoto; Stephanov-Yin; ...]

Chiral Fluid



EM fields

MHD = Magnetohydrodynamics

Systems described by chiral MHD

- Heavy-ion collisions
 - For the CME search, reliable estimate of the lifetime of **B** is important
- Early Universe
- Weyl/Dirac semimetals

CME currents from magnetic reconnections

[Hirono-Kharzeev-Yin, PRL'16]

Magnetic & fermionic helicities

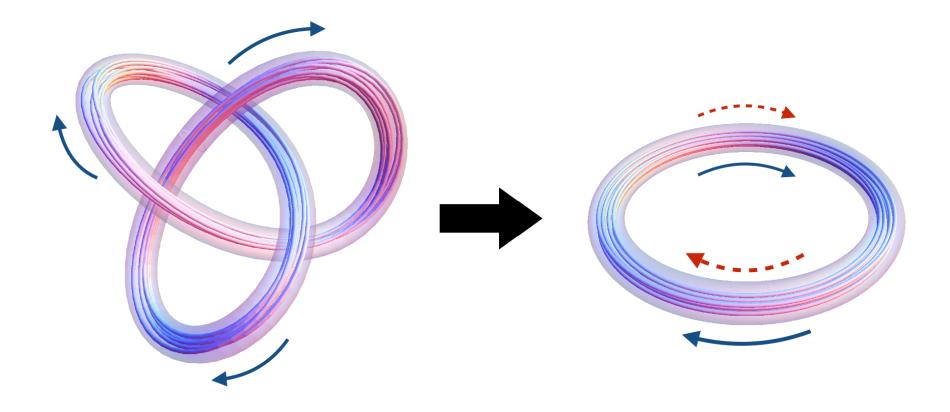
$\partial_{\mu}j^{\mu}_{A} = C_{A}\boldsymbol{E}\cdot\boldsymbol{B}$

Magnetic & fermionic helicities

$$\partial_{\mu}j^{\mu}_{A} = C_{A}\boldsymbol{E}\cdot\boldsymbol{B}$$

$$\begin{array}{l} \label{eq:holestar} & \bullet & \hline \frac{d}{dt} \left[\mathcal{H} + \mathcal{H}_F \right] = 0 \\ \\ \mathcal{H} = \int d^3 x \mathbf{A} \cdot \mathbf{B} \quad \mathcal{H}_F = \frac{2}{C_A} \int d^3 x \; n_A \\ \\ \\ \text{Magnetic helicity} & \text{Fermionic helicity} \end{array}$$

Magnetic helicity knows topology $\mathcal{H} = \int d^3 x \mathbf{A} \cdot \mathbf{B}$ $= \sum_i \mathcal{S}_i \varphi_i^2 + 2 \sum_{i,j} \mathcal{L}_{ij} \varphi_i \varphi_j$ Self-linking number Linking number

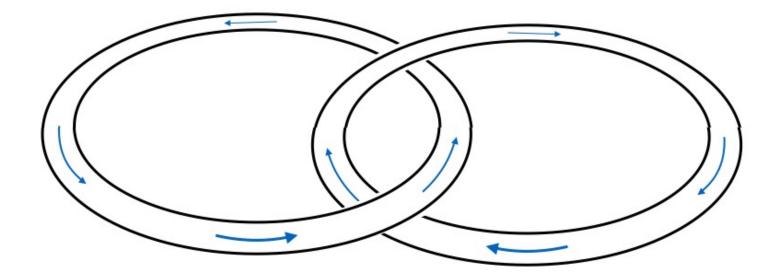


CME currents from reconnections of **B**

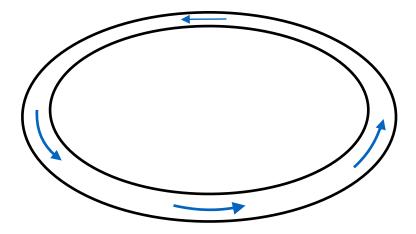
[Hirono-Kharzeev-Yin PRL'16]

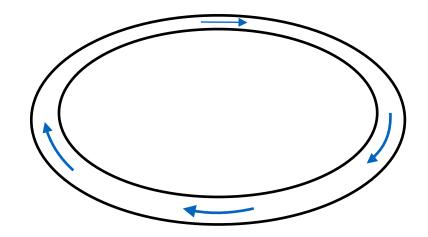
 $\sum_{i} \oint_{C_{i}} \Delta \boldsymbol{J} \cdot d\boldsymbol{x} = -\frac{e^{3}}{2\pi^{2}} \Delta \mathcal{H}$

Change of topology induces CME currents!

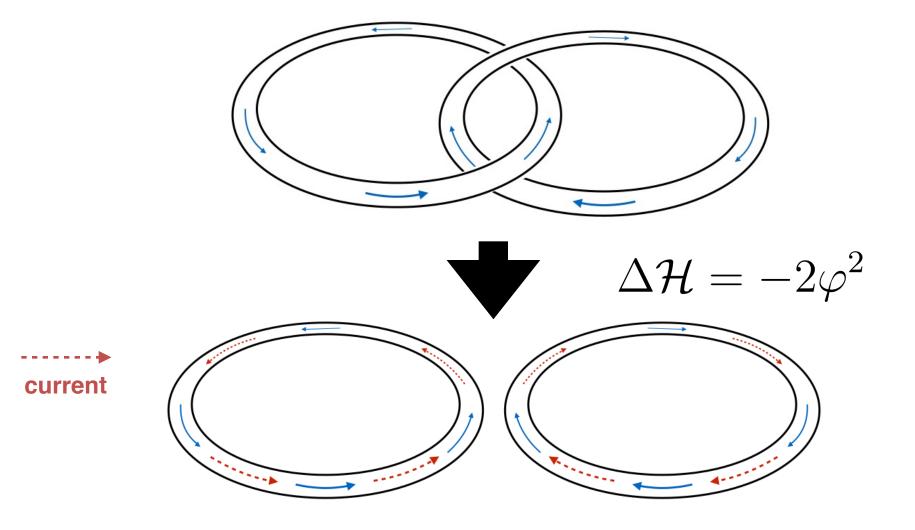


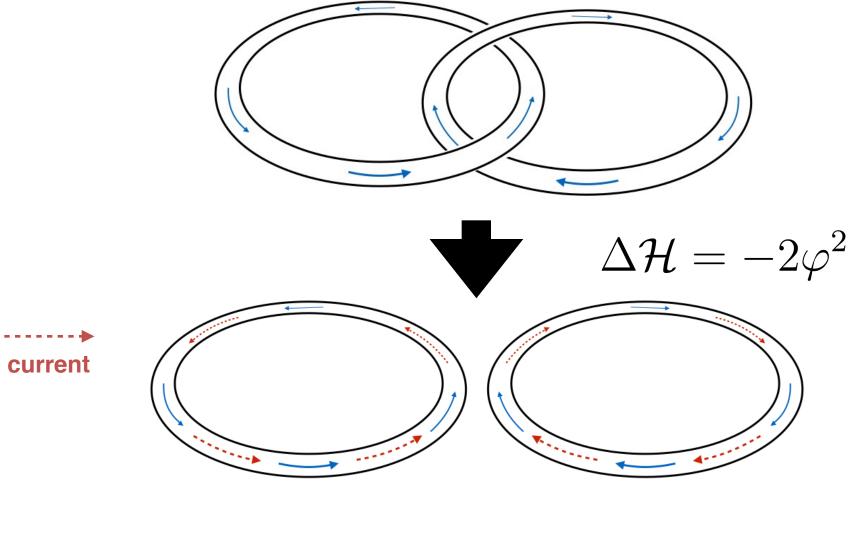
 $\mathcal{H}=2\varphi^2$

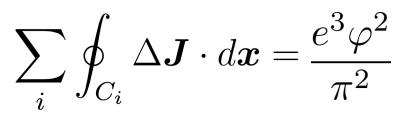




$\mathcal{H} = 0$







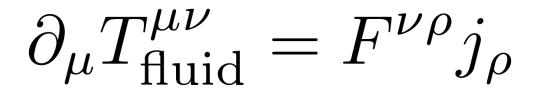
Formulation & waves of chiral MHD

[Hattori-Hirono-Yee-Yin, in preparation]

Chiral MHD

- MHD & chiral MHD can be understood as a low-energy effective theory basing on derivative expansion
- A new anomaly-induced instability

EOM of MHD



$$\partial_{\mu}F^{\mu\nu} = j^{\nu}$$

$$\partial_{\mu}\tilde{F}^{\mu\nu} = 0$$

$$\tilde{F}^{\mu\nu} \equiv \epsilon^{\mu\nu\alpha\beta} F_{\alpha\beta}$$

EOM of MHD

$$\partial_{\mu}T_{\rm tot}^{\mu\nu} = 0 \qquad \partial_{\mu}\tilde{F}^{\mu\nu} = 0$$

$$T_{\text{tot}}^{\mu\nu} = T_{\text{fluid}}^{\mu\nu} + T_{\text{EM}}^{\mu\nu}$$
$$T_{\text{EM}}^{\mu\nu} = -F_{\ \alpha}^{\mu}F^{\nu\alpha} + \frac{1}{4}\eta^{\mu\nu}F_{\alpha\beta}F^{\alpha\beta}$$

EOM of MHD

 $E^{\mu} \equiv F^{\mu\nu}u_{\nu}, \quad B^{\mu} \equiv \tilde{F}^{\mu\nu}u_{\nu},$

 $F^{\mu\nu} = E^{\mu}u^{\nu} - E^{\nu}u^{\mu} - \epsilon^{\mu\nu\rho}B_{\rho}$ $\tilde{F}^{\mu\nu} = B^{\mu}u^{\nu} - B^{\nu}u^{\mu} + \epsilon^{\mu\nu\rho}E_{\rho}$ $\epsilon^{\mu\nu\alpha} \equiv \epsilon^{\mu\nu\alpha\beta} u_{\beta}$

Hydrodynamic variables

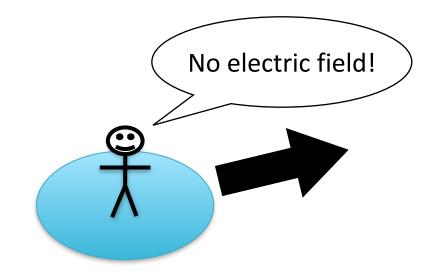
- · Parameters characterizing local thermal equilibrium
- Neutral fluid with a conserved charge $\{T(\pmb{x}),\, u^{\mu}(\pmb{x}),\, \mu(\pmb{x})\}$
- MHD $\{T({m x}),\, u^\mu({m x}),\, B^\mu({m x})\}$

of hydro variables = # of equations = 7

No electric field in the fluid frame in ideal MHD

$$E^{\mu}_{(0)} = 0$$

Correspond to large conductivity limit



Constitutive relations for ideal MHD

$$T_{\text{tot}(0)}^{\mu\nu} = (e+p)u^{\mu}u^{\nu} - p\eta^{\mu\nu} + \mathbf{B}^{2} \left[u^{\mu}u^{\nu} - b^{\mu}b^{\nu} - \frac{1}{2}\eta^{\mu\nu} \right]$$

$$B^{\mu} = |\mathbf{B}|b^{\mu} \ b_{\mu}b^{\mu} = -1$$

$$F^{\mu\nu}_{(0)} = \epsilon^{\mu\nu\rho\sigma} u_{\rho} B_{\sigma}$$

CME doesn't play any role in ideal MHD!

Why?

$$j^{\mu} = \sigma E^{\mu} + \sigma_B B^{\mu}$$
$$E^{\mu} = \frac{1}{\sigma} j^{\mu} - \frac{\sigma_B}{\sigma} B^{\mu}$$

In the limit $\sigma
ightarrow \infty$

$$F^{\mu\nu} = \epsilon^{\mu\nu\rho\sigma} u_{\rho} B_{\sigma}$$

Chiral magnetic conductivity never appears in EOM $\partial_{\mu}T^{\mu\nu}_{\rm tot}=0 \qquad \partial_{\mu}\tilde{F}^{\mu\nu}=0$

Conservation of topology of B

- Flux is "frozen in" to the fluid
- Magnetic helicity is conserved in ideal MHD
 - No reconnection

$$h^{\mu}_{\rm B} = \tilde{F}^{\mu
u}A_{
u}$$
 : helicity current
 $\partial_{\mu}h^{\mu}_{\rm B} = 2\tilde{F}^{\mu
u}F_{\mu
u} = 8E^{\mu}B_{\mu} = 0$
 $\mathcal{H} = \int d^3x h^0_{\rm B}$ is conserved

First order in derivative expansion

Using the second law,

$$T^{\mu\nu}_{\text{tot}(1)} = \zeta \Delta^{\mu\nu} \partial \cdot u + 2\eta \nabla^{<\mu} u^{\nu>}$$

 E^{μ} : C-odd, P-odd

$$E^{\mu}_{(1)} = \frac{1}{\sigma\beta} \epsilon^{\mu\nu\alpha\beta} u_{\nu} \partial_{\alpha} (\beta B_{\beta}) - \epsilon_{B} B^{\mu}$$

 σ : electric conductivity

$$\epsilon_B = rac{\sigma_B}{\sigma}$$
 σ_B : chiral magnetic conductivity

25

First order in derivative expansion

$$\tilde{F}^{\mu\nu}_{(1)} = \epsilon^{\mu\nu\rho\sigma} E_{(1)\rho} u_{\sigma}$$

$$\partial_{\mu} \left[T^{\mu\nu}_{\text{tot}(0)} + T^{\mu\nu}_{\text{tot}(1)} \right] = 0$$
$$\partial_{\mu} \left[\tilde{F}^{\mu\nu}_{(0)} + \tilde{F}^{\mu\nu}_{(1)} \right] = 0$$

Waves in chiral MHD

• Linear fluctuations - 6 modes in total

$$e \to e + \delta e,$$

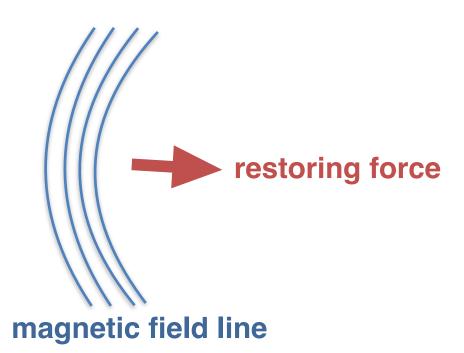
 $B \to B + \delta B,$

$$u^{\mu} \to u^{\mu} + \delta u^{\mu},$$

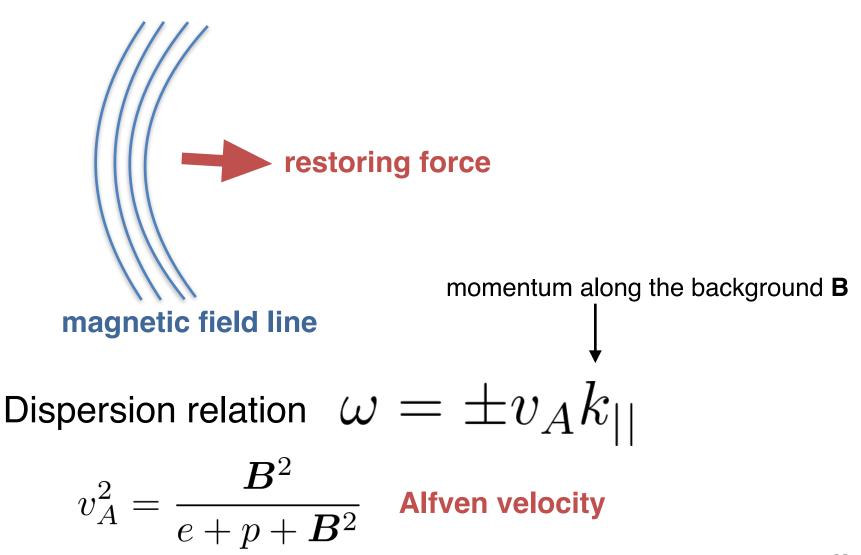
 $b^{\mu} \rightarrow b^{\mu} + \delta b^{\mu}$.

Alfven wave

Alfven wave

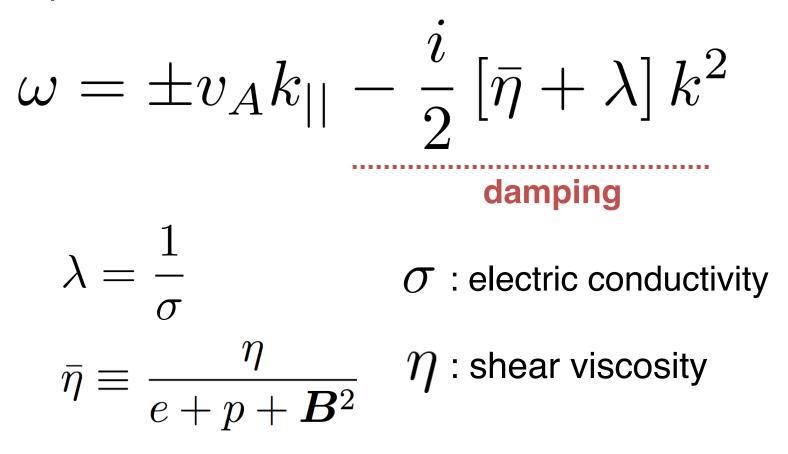


Alfven wave



Alfven wave in dissipative MHD

Dispersion relation



Alfven wave in chiral MHD

Including CME (when $m{k} \propto m{B}$)

$$\omega = \pm v_A k_{||} - \frac{i}{2} \left[(\bar{\eta} + \lambda) k_{||}^2 - s \epsilon_B k_{||} \right]$$

 $s=\pm 1$ indicates the helicity of the mode

$$i\mathbf{k} \times \mathbf{e}^{(s)} = sk\mathbf{e}^{(s)}$$

helicity eigenstate

Instability in one of the helicity modes

CIVIE

Alfven wave in chiral MHD

Including CME (when $m{k} \propto m{B}$)

$$\omega = \pm v_A k_{||} - \frac{i}{2} \left[(\bar{\eta} + \lambda) k_{||}^2 - s \epsilon_B k_{||} \right]$$

$$\mathsf{CME}$$

$$\mathsf{Magnetic}$$

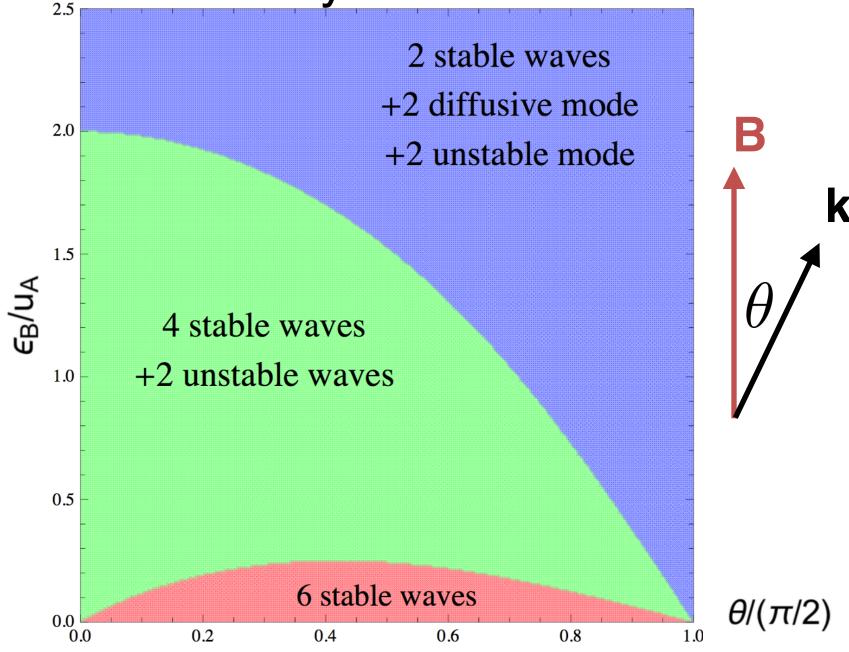
$$\mathsf{helicity}$$

$$\mathsf{Fermionic}$$

$$\mathsf{fluid}$$

$$\mathsf{helicity}$$

Stability of the waves



Summary

1. B-field topology & CME currents

- Reconnections generate CME currents

2. Chiral MHD

- Consistent theory of chiral fluids and EM fields
- CME appears in the first order P-odd correction
- Helicity dependent instability
- generation of helical B fields and flows
- Numerical implementation is under way

Backup slides

Toward numerical impl. of chiral MHD

with Mace, Kharzeev, Inghirami et.al.

- Collaborating with ECHO-QGP
- Implement:
 - Finite resistivity + anomalous effects
 - Pre-equilibrium CME currents

B-field evolution

