<u>Hydrodynamics with critical slowing</u> <u>down ("Hydro+")</u>

Hydro. Hydro.+

StonyBrook, Aug.8, 2017

Search for the critical point in 19th c.

- Heating and compressing liquid (matter under extreme conditions) in a digester.
- Listening to discontinuities in the splashing sound (critical signature).

High Energy Frontier of 19th c. (digester made from canon barrel).

Search for the QCD critical point in 21 c.

- Creating QCD matter under extreme conditions .
- Identifying observables sensitive to criticality (fluctuations of hadron multiplicities etc).

• The expanding fireball is not the liquid in a digest : dynamical effects are important !

 The equilibration time of critical fluctuation grows (critical slowing down).

Relaxation time ~
$$\xi^z >> \tau_{mic}$$
 (z \approx 3)

Or $\omega_{\text{Critical}} \sim 1/(\xi)^3$

- Off-equilibrium effects limit the growth of correlation length. (Berdinkov-Rajagopal, 99')
- Critical cumulants can be different from the equilibrium expectation qualitatively !

(S. Mukherjee, R. Venugopalan and YY, PRC, 2015)

Equilibrium

Off-Equilibrium

Challenging for hydro. near a critical point

- The applicability of Hydro. near C.P. is limited by the critical slowing down ($\omega < \omega_{Critical} \sim 1/\xi^3$).
 - The critical E.o.S only applies to the situation that critical fluctuations are in equilibrium.
 - Another symptom: the growth of bulk viscosity $\zeta_{Kubo} \sim \xi^3$.

<u>The goal of hydro+critical slowing (or</u> <u>"Hydro+"</u>)

- Formulating a hydro-like theory which is applicable at scale $\omega > \omega_{Critical} \sim 1/\xi^3$.
 - "+": adding critical slow modes (parametrically longer life than other microscopic modes).

<u>Outline</u>

- Construction of "Hydro+" critical slowing down.
- An example in the expanding background (briefly).
- Summary.

<u>A warm-up exercise: adding one slow mode</u> <u>to hydro.</u>

General strategy

- Step I: writing down a general local theory with additional slow mode(s) φ and relaxation rate Γ_φ .
- Step II: Fixing inputs of "hydro+" as much as possible from dynamical/static critical universality.

E.o.S and dynamical equation for ϕ

- Generalized entropy (E.o.S) : $s_{(+)}(\varepsilon,n,\varphi)$.
 - Equilibrium entropy is the maximum of $s_{(+)}(\varepsilon,n,\phi)$: $s(\varepsilon,n) = s_{(+)}(\varepsilon,n,\phi) \mid_{\pi=0}$ where $\pi(\varepsilon,n,\phi) = \partial s_{(+)}(\varepsilon,n,\phi)/\partial \phi$
 - E.o.M for ϕ (slow equilibration of ϕ):

$$(u^{\mu} \partial_{\mu})\phi = -\gamma_{\phi}\pi + \text{gradient term} \qquad \gamma_{\phi} \propto \Gamma_{\phi}$$

 $\gamma_{\phi} \text{ is functions of } \varepsilon, n, \phi)$

Hydro part of "hydro+"

• $T^{\mu\nu} = \varepsilon u^{\mu} u^{\nu} + P_{(+)}(\varepsilon, n, \phi) g^{\mu\nu} + \Delta T^{\mu\nu}$.

$$s_{(+)}(\varepsilon,n,\phi) \Rightarrow p_{(+)}(\varepsilon,n,\phi)$$

- $\Delta T^{\mu\nu} = -\zeta_{(+)} \Delta^{\mu\nu} (\partial u)$ shear viscous term (similar for ΔJ^{μ})
- Constraints:
 - 2nd law: Γ_{ϕ} , $\zeta_{(+)}$, etc >0.
 - No double counting:

 $\zeta_{\text{Kubo}} = \zeta_{(+)} + \text{contributions from } \varphi(\alpha 1/\Gamma_{\varphi})$

Non-equilibrium effects modify E.o.S

$$c_s^2 = \left(\frac{\partial p(\epsilon, n)}{\partial \epsilon}\right)_{s/n} \qquad c_+^2 = \left(\frac{\partial p_{(+)}(\epsilon, n)}{\partial \epsilon}\right)_{s/n}$$

$$c_n^2 = \left(\frac{\partial p_{(+)}(\epsilon, n, \phi)}{\partial \epsilon}\right)_{s/n, \phi}$$

 $(\rho_{\text{Bulk}}(\omega) \sim \text{Im} < T^{i}_{i}T^{i}_{i} >)$

• Transport coefficient is related to I/Γ_{φ} .

 $\zeta_{Kubo} - \zeta_{+} = [(c_{s,+})^{2} - (c_{s})^{2}]/\Gamma_{\varphi}$

- Entropy production will be over-estimated without including the additional slow mode.
- Area: shift of sound velocity.

$$[(c_{s,+})^2 - (c_s)^2] \propto \int d\omega \ (\rho(\omega)/\omega - \zeta_{(+)})$$

Matching area fixes (c_{s,+})².

 $(\rho_{Bulk}(\omega) \text{ from hydro+one mode })$

- One mode is not enough to fully capture the critical dynamic behavior.
- Next step: Hydro+ a spectrum of slow modes.

Hydro+a spectrum of slow modes

$$\frac{\text{Construction of hydro} + \phi(t,x;Q)}{s_{+}(\varepsilon,n,\varphi)} \longrightarrow s_{+}(\varepsilon,n,\varphi(Q)) \text{ (thus } p_{+}(\varepsilon,n,\varphi(Q)))}$$
$$\pi = \partial s_{+}(\varepsilon,n,\varphi)/\partial \varphi \longrightarrow \pi (Q) = \delta s_{+}(\varepsilon,n,\varphi(Q))/\delta \varphi(Q)$$
$$(u^{\mu} \partial_{\mu})\phi = -\gamma_{\phi}\pi - \dots \longrightarrow (u^{\mu} \partial_{\mu})\phi(Q) = -\gamma_{\phi}(Q)\pi(Q) - \dots$$

To proceed, a more "microscopic" understanding of critical slow modes is needed

<u>Slow modes near a critical point</u>

- A general critical point: slow modes include order parameter (M), and $<\delta M\delta M>$ (and potentially higher cumulants...).
- QCD critical point: hydro + $<\delta M\delta M>$.
 - M is a linear combination of ϵ , n and chiral condensate σ . σ equilibrates at microscopic time scale and the evolution of σ simply traces the evolution of ϵ , n \Rightarrow Eq. for M.

(Son-Stephanov, 04')

<u>Relation between $<\delta M\delta M > and \phi(t, x; Q)</u>$ </u>

• The Wigner transform of $\langle \delta M \delta M \rangle \Rightarrow \phi(t, x; Q)$

 $\varphi(t, x ; Q) = \int d^3\Delta x < \delta M(t, x + \Delta x) \ \delta M(t, x - \Delta x) > e^{-i \ Q \ \Delta x}$

 $\phi(t,x;Q)$ may be viewed as many local slow modes with label Q at a fluid cell (t,x).

$$\phi(Q_1)$$

 $\phi(Q_2)$
 $t, x)$

• In equilibrium: $\phi_{eq}(Q) = 1/[(\chi_M)^{-1}+Q^2] (\phi_{eq}(Q=0)=\chi_M - \kappa_2)$.

Generalized Entropy $s_+(\epsilon,n,\phi(Q))$

- The generalized entropy $s_+(\epsilon, n, \phi(Q))$ can be derived following the formalism of 2PI effective action in QFT. (J. M. Cornwall, R. Jackiw, E. Tomboulis, 1974')
 - NB: 2PI effective action is a useful tool to study non-equilibrium effects. (e.g. J. Berges et al, hep-ph/0409123)
- A simple form at the leading order in "loop expansion":

$$s_+(\epsilon, n, \phi(Q)) = s_{eq}(\epsilon, n) + \frac{1}{2} \int_Q \left\{ \log \left(\frac{\phi(Q)}{\phi_{eq}(Q)} \right) - \frac{\phi(Q)}{\phi_{eq}(Q)} + 1 \right\},$$

E.o.M for $\phi(Q)$

- A Q-dependent (phenomenological) relaxation equation for φ:
 - $(\mathbf{u}^{\mu} \partial_{\mu}) \phi = -\gamma_{\phi} \pi \qquad \longrightarrow \qquad (u^{\mu} \partial_{\mu}) \phi(Q) = -2\gamma(Q)\pi(Q)$
- $\Gamma(Q) = \gamma(Q)/(\phi_{eq}(Q))^2$ is known from model H.
- $s_{(+)}(\epsilon,n,\varphi(Q))$ together with $\Gamma(Q)$ successfully reproduces critical behavior of $\rho_{Bulk}(\omega) \sim Im \langle T^i_i T^i_i \rangle$.

An example of hydro+ in an expanding QGP

Solving equation for $\phi(Q)$ along a trajectory

M~T-T_c, $r_{Ising} \sim \mu - \mu_c$

"Hydro+" describes the slow relaxation of critical fluctuations

 $\tau < \tau_{\text{peak}}$, fall out of equilibrium. $\tau > \tau_{\text{peak}}$, memory.

 NB: φ(Q) can be related to the baryon number balance function (if supplemented with mapping and freeze-out prescription).

<u>Hydro+ describes off-equilibrium</u> <u>modification of E.o.S</u>

<u>Summary</u>

- "Hydro+": describing bulk evolution and fluctuations near the critical point in one and the same framework.
- Future: quantitative description for both flow observables and fluctuation measure.

Coupled evolution \Rightarrow <flow cumulants>_{data}

<u>Back-up</u>