

Strange Hadrons (K_S^0 and Λ) Production in Fixed-Target Al+Au at $\sqrt{S_{NN}} = 4.9$ GeV and Au+Au at $\sqrt{S_{NN}} = 4.5$ GeV in STAR

Muhammad Usman Ashraf for the STAR Collaboration Tsinghua University Beijing, China

Critical Point and Onset of Deconfinement CPOD 2017 Stony Brook University

Outline

- Introduction to Fixed-Target (FXT) Program
 Overview of STAR Detector
 STAR FXT Geometry
 Mid-rapidity K⁰_S and Λ production in FXT Au+Au and Al+Au collisions
 > p_T and m_T-m₀ spectra
- Particle yields and comparison with AGS <u>experiments</u>
- □ Future upgrades and FXT program
- Summary

BES-I Program

□ BES phase I at RHIC

- Study the onset of deconfinement and phase boundary
- Search the QCD critical point
- \rightarrow Turn-off of QGP signals
- Softening of the equation of state
- Find evidence of the possible first-order phase transition
- Systematic study of Au+Au collisions at 7.7, 11.5, 14.5, 19.6, 27, 39 GeV (BES Phase-I)

STAR, arXiv:1007.2613 Need to probe lower energies!

Muhammad Usman Ashraf - CPOD 2017

Motivation for a Fixed-Target Program

NA49 has reported that the onset of deconfinement may occurs at 7 GeV, the low end of BES range.

□ How to achieve low energy?

- By installing a target inside the beam pipe and using RHIC beam as projectile.
- > It can extend the μ_B range from 400 MeV to about 720 MeV
- Provide control measurements for searches of the critical point and onset of deconfinement

The Solenoidal Tracker At RHIC (STAR)

Fixed-Target Geometry

Centrality Determination for Au+Au at $\sqrt{S_{NN}}$ = 4.5 GeV

Pileup has been removed by multiplicity cut.

15%-30% centralities are biased toward the more central collisions.

 nGoodTracks are those tracks which pass through basic QA cuts.

This biasing is minimal for more central events.

Centrality Determination for Al+Au at $\sqrt{S_{NN}}$ = 4.9 GeV

3.4 M Al+Au events collected with the top 30% centrality.

It is not a beam pipe study.

Pileup has been removed by multiplicity cut.

Particle Reconstruction in Al+Au $\sqrt{S_{NN}}$ = 4.9 GeV

Al+Au at $\sqrt{S_{NN}} = 4.9 \text{ GeV}, 0-5\%$ $\Rightarrow K^0{}_S \rightarrow \pi^+ + \pi^ \Rightarrow \Lambda \rightarrow p + \pi$ $\Box \pi$, K, p are identified with TPC dE/dx \Box Secondary vertex reconstruction

p_T spectra of K_S^0 in Au+Au $\sqrt{S_{NN}}$ = 4.5 GeV

- \succ K_S^0 Spectra in Different rapidity bins for FXT Au+Au at $\sqrt{S_{NN}}$ = 4.5 GeV.
- Statistical errors only.
- \succ 15-30% trigger is biased towards the most central.
- \rightarrow Spectra are extrapolated to high p_T with Stefan-Boltzmann fitting function.

$p_T \text{ spectra of } \Lambda \text{ in } Au + Au \sqrt{S_{NN}} = 4.5 \text{ GeV}$

- > Λ Spectra in Different rapidity bins for FXT Au+Au at $\sqrt{S_{NN}}$ = 4.5 GeV.
- Statistical errors only.
- > 15-30% trigger is biased towards the most central.
- \rightarrow Spectra are extrapolated to high p_T with Stefan-Boltzmann fitting function.

p_T spectra of K_S^0 in Al+Au $\sqrt{S_{NN}}$ = 4.9 GeV

*K*⁰_S Spectra in Different rapidity bins for FXT Al+Au at √S_{NN} = 4.9 GeV.
 Statistical errors only.
 → Spectra are extrapolated to high p_T with Stefan-Boltzmann fitting function.

Muhammad Usman Ashraf - CPOD 2017

$p_{\rm T}$ spectra of Λ in Al+Au $\sqrt{S_{NN}}$ = 4.9 GeV

Λ Spectra in Different rapidity bins for FXT Al+Au at √S_{NN} = 4.9 GeV.
 Statistical errors only.
 → Spectra are extrapolated to high p_T with Stefan-Boltzmann fitting function.

m_T -m₀ spectra of K_S^0 and Λ in Au+Au at $\sqrt{S_{NN}} = 4.5$ GeV

- > m_T -m₀Spectra in Different rapidity bins for FXT Au+Au at $\sqrt{S_{NN}}$ = 4.5 GeV.
- > Errors are statistical only.
- \rightarrow Solid line fit to data and dashed is extrapolation with fitting function.

m_T-m₀ spectra of K_S^0 and Λ in Al+Au at $\sqrt{S_{NN}} = 4.9 \text{ GeV}$

- > m_T -m₀Spectra in Different rapidity bins for FXT Al+Au at $\sqrt{S_{NN}}$ = 4.9 GeV.
- Errors are statistical only.
 - \rightarrow Solid line fit to data and dashed is extrapolation with fitting function.

Comparison of m_T-m₀ spectra with Au+Au and Al+Au

- > $m_T m_0$ Spectra in Different rapidity bins for FXT Au+Au at $\sqrt{S_{NN}} = 4.5$ GeV and Al+Au at $\sqrt{S_{NN}} = 4.9$ GeV.
- Errors are statistical only.
- → Solid line fit to data and dashed is extrapolation with fitting function.

K_S^0 Yield in Au+Au and Al+Au

Λ Yield Au+Au and Al+Au

- □ Amplitude and width of rapidity density, dN/dy, of Λ in Au+Au @ 4.5 GeV are consistent with AGS experiments.
- \Box Due to the asymmetric system, the dN/dy rapidity distribution shape is different from A+A.
- □ The Al+Au data lies below Au+Au data due to asymmetric system.

Particle Yield comparison in Au+Au at $\sqrt{S_{NN}}$ = 4.5 GeV with different experiments

 E895: Phys. Rev. C 68 (2003) 054905

- E895: NPA 698 (2002) 495c
- E802: NPA 610 (1996) 139c
- E877: Phys. Rev. C 63 (2001) 014902
- E891: PLB 382 (1996) 35 E896: Phys. Rev. Lett. 88, 062301
- NÁ44: Phys. Rev. C 66 (2002) 044907
- NA49: JPG 30 (2004) S701
- NA49: Phys. Rev. Lett. 93 (2004) 022302
- Phys. Rev. Lett. 93 (2004) 022302
- NÁ57: JPG:NPP32 (2006) 2065
- WA98: Phys. Rev. C 67 (2003) 014906

□ The excitation function of integrated yield, dN/dy, at mid-rapidity, scaled by the average number of participants.

- \Box K_S^0 points are scaled by factor of 10.
- □ STÂR data is a in good agreement with various AGS and CERN experiments.

The STAR Upgrades and the FXT program

iTPC Upgrade:

- TPC Upgrade:EndCap TOF Upgrade:EPD Upgrade:Improved dE/dx resolution✓ Mid-rapidity coverage is criticalEPD Upgrade:✓ Mid-rapidity coverage is critical✓ Better trigger Better momentum resolution Veeded for PID at mid-rapidity
 - ✓ -1.6<η<-1.1</p>
 - ✓ Allows higher energy range of FXT program
 - ✓ Ready in 2019

https://arxiv.org/pdf/1609.05102.pdf

- ✓ Reduces background
- ✓ Improves event plane resolution
- \checkmark 2.1<| η |<5.1 Ready in 2018

Extends η coverage from

Star Note 0666 : An Event Plane Detector for STAR

1.0 to 1.5

 $p_T > 60 \,\mathrm{MeV}/\mathrm{c}$

Ready in 2019

Strange Particles in FXT and BES-II

□ Clear signals for K_S^0 , Λ and Ξ^- are observed in Au+Au at 4.5 GeV FXT test run

□ Clear signals for K_S^0 and Λ are observed in Al+Au at 4.9 GeV FXT test run.

 \Box Have not seen $\overline{\Lambda}$ and Ω , due to low statistics.

□ After upgrade we need ~100M events for each energy and hoping to see the Λ , Ω and Ξ^- .

Summary

- □ These results show that STAR has a capability to run in the fixed-target as well as in the collider mode.
- \Box K_S^0 and Λ m_T-m₀ spectra are in a good agreement with the AGS experiments.
- □ Width and amplitude of K_S^0 and Λ for Au+Au and Al+Au, rapidity densities dN/dy, are in a good agreement with AGS experiments.
- □ FXT program proposed during RHIC BES-II will extend the energy down to $\sqrt{s_{NN}}$ = 3.0 GeV (μ_B =720 MeV).
- □ iTPC, eTOF and EPD upgrades will allow more comprehensive and refined measurements.

Thank You!