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lNtroauction

" 3 : : C
e |nitial angular momentum L ~ 10" h in non-central heavy-ion collisions.

* Baryon stopping may transfer this angular momentum, in part, to the
fireball.

e Due to vorticity and spin-orbit coupling, ¢-meson spin may align with L.
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Spin alignment

* Spin alignment can be determined
from the angular distribution of the

decay products™:

N
d(cos0")

Ny x| (1= Py )+ (3pg — Dcos® 0" |

where Ng Is the normalization and 6* is

the angle between the polarization
direction L and the momentum
direction of a daughter particle in the
rest frame of the parent vector meson.

A deviation of pgg from 1/3 signals net
spin alignment.

*K. Schilling el al., Nucl. Phys. B 15, 397 (1970)
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Hadronization scenarios

* Fragmentation of polarized
quarks g -> V + X, likely
happens In the intermediate
ot and forward rapidity

Recombination of
oolarized quarks and anti-
quarks in QGP likely

dominates in the low pr region. (V is the vector
and central rapidity region.  meson, which is ¢ in our
ey 1= P analysis)
— S 2
0 3+ P’ o(frag) _ 1+ fP,
S R )

Always smaller than 1/3

Always larger than 1/3
P = T Hp is the global quark polarization
4 E(E+m,)

P/ = —PBP is the polarization of the anti-quark created in the fragmentation process

Z.T. Liang and X.N. Wang, Phys. Lett. B629, 20 (2005)
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STAR'’s previous results

 STAR has published results with data taken in year 2004.

« Updated results have been shown at QM2017 (Xu Sun’s poster), with data taken in year
2010 & 2011.

» Both of the above use the 2nd-order event plane obtained from TPC. The published result
is consistent with 1/3; New results with reduced uncert()allnties show some pt dependence.
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STAR’s Published results
B.I.Abelev et al (STAR Collaboration), Phys. Rev. C77,061902(R) (2008) . Xu Sun’s QM2017 poster



STAR detector

e Large acceptance (2x azimuthal angle coverage).

e Excellent particle identification capabilities.

e Event plane reconstruction by ZDCSMD, BBC (1st-
order EP) or by TPC (2nd-order EP).



Datasets and cuts

. Number of events: _
Au+Au 200 GeV ~ 500M ° Track cuts:
Au+Au 39 GeV ~ 100M NnHitsFit > 15
Au+Au 27 GeV ~ 30M - - -
AULAL 196 GaV ~ 10M nHitsFit/nHitsMax > 0.52
Au+Au 11.5 GeV ~ 3M -10<eta< 1.0
dca < 2.0cm
. Event cuts: pr > 0.1 GeV/c
-30.0 < Vz < 30.0cm p<10 GeV/c
Vr<2.0cm invariant mass < 1.1 GeV/c2
-3.0 < Vz-VzVPD < 3.0 cm
Number ToF matched point > 3
Minimum Bias Event
Bad runs are rejected
* Jrack PID:
Momentum(GeV/c) With TOF Without TOF |
[0, 0.65] 0.16<m?*<0.36, [nSigmaKaon| <2.5 i -1.5<nSigmaKaon<2.5 :
(0.65, 1.5) 0.16<m?<0.36, |nSigmakaon| < 2.5 — ’
[1.5, o0) 0.125<m?<0.36, [nSigmaKaon| < 2.5 —
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1st order event plane

* |n our analysis, the event
plane is obtained from
/DCSMD (for 200 GeV
data) or BBC (for low
energy data) and flattened
by shitting method*. The
flattening is applied for
every 10 runs (about 60000
events in Au+Au 200 GeV
collisions).

*A. Poskanzer and S. Voloshin, PRC 58, 1671 (1998)
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e The background is obtained using
event mixing technique.

* The ¢p-mesons signal is fitted with
Briet-Wigner function and the 2nd
order polynomial function for
residual background to extract raw
¢ meson yield:

1 AT
278 (m—my)? +(T /2)

where [ is the width of the
distribution and A is the area of the
distribution. A is the raw yield
scaled by the bln width

(= 0.001 GeV/c* ).
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Fitting of a single pr & cosB6* bin.
Centrality: 40%-50% pt: 1.2~1.8 GeV/C co0s6*:-0.6~-0.4



Extracting observed Poo

o With yield of ¢ for different bins,
we can fit the yield distribution <

and obtain poo using 124
dN

d(cos@ )_N X[ ~ Poo "'(3,000—1)008 6 ] 142

140
6" is the angle between the

polarization direction L and the 198

_L|III|III|III|III|III|I

momentum direction of a 136
daughter particle in the rest frame
of the parent vector meson. 194

 \What we extracted here is the poo
before event plane resolution
correction (observed po).
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Fitting of yield Vs cos6*
Au+Au 200 GeV
Centrality: 40-50%
pt: 0.8~1.2 GeV/c



Efficiency and acceptance

Au+Au 200GeV 20%-60%
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d-meson efficiency*acceptance is

calculated with K* and K~
embedding data and shows very
weak cosB* dependence, and the
effect on poo Is negligible.



Derivation of event plane
resolution correction

e For spin =1 particles, their daughter's angular distribution can be
written in a general form as a function of 8 and B (the azimuthal
angle w.r.t L, see the picture at bottom right):

dN* o<1+ Acos’ @ + Bsin’ 0 cos2B+Csin20 cos 3
dcosO df
e where 7 ' {‘
A=3py—D/(1=py) K+\?\
« We have 1B
cos@ = sinOsin(@ —
cosf =sin6 sinf3 >
where @ is the angle between Z-axis
and the momentum direction of a Z

daughter particle in the rest frame. Event plane
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Derivation of event plane
resolution correction

The observed event plane ¥'may be different from the real event plane:

v'=y+A
The distribution of A is supposed to follow an even function, so we can

assume
(cos2A)=R, (sin2A)=0

When v - v, 0 —06", B->p, dN* o<1+ Acos’ 0 + Bsin’ @ cos2+Csin20 cos
we have | . dcos8 dp
A(1+3R)+ B(3—3R) l rotate w.r.t z-axis by A
1 1 4+A(1-R)+B(-1+R) y dé\{*dﬁ’ o< 14+ A’cos’ @ + B’sin’ 0’*cos2ﬁ+C’Sin20’*cos,B’§
! i dcos :
4+A(—-R)+B(—-1+R) L
¢ « 4-C-R P K\OP
4+A(—-R)+B(—-1+R) ;D
A(1+3R) o1 4 o 5 "‘;\(co—‘l’)
When B=0, A'= Cpred - = = obv _
4+ A(1-R) P =3 1+3R(p00 3) )
Z
Event plane
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Verity the resolution correction
formula with simulations

o 0.42
» To test the formula of resolution § 0 Ret6l y *
. oL . expecte
correction, we generate Monte 036 — P reconstructed
Carlo events by Pythia with A 0.34 ¥
: : S - 0.32-
following gaussian distributions. o3 .
voal | | 0.28;—
* Poo can be either obtained by 0.26- .
1t ' ' 0'24:_|...|...|...|...|...|...|...|...|...
flttlng the yleld Wlth real event 6.24 026 028 03 032 034 036 038 04 042
plane (without A), or by observed p,,
calculation with the correction £
formula we derived. B oss X expected i
0.36 = 0,, reconstructed Zé:
« The plots show the comparison o3
of results between two methods. 03" .
The correction works well even 0.281-
when the resolution is low. 3 '
024 026 028 03 032 034 036 038 04 042

observed Poo
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poo VS. pT

o 0.4r
= - Au+Au 200 GeV
0.38 - Centrality 20-60 %
0.36 - - ¢ meson (1st order EP)
0.34 ;__ __________ Q S DU @ _____ __%}_ ________________________________
a2 T
0.3 i
0.28 —=— Real L
0.26 - —&- 3d random L STAR preliminary
B | | | | I | | | | I | | | | I | | | | I | | | | I
0 1 2 3 4 5
pT(GeV/c)

* Non-trivial pt dependence is seen. 60 away from 1/3 at pr=1.5 GeV/c.

* As a consistency check, the poois also studied with an L direction randomized
in 3d-space, which is at the expected value of 1/3.
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1st EP vs. 2nd EP

Qg _
- Au+Au 200 GeV
0.38 Centrality 20-60%
0.36 :_ - ¢ meson
SUSLIN NPT
0.32— E- L
0.3 i
0.28 — —=— 1st order EP
B —o— 2rd order EP STAR preliminary
0.26—
C A R R RS |
0 1 2 3 4 5
pT(GeV/c)

* To explain the difference at pt ~ 1.5 GeV/c, we need to
consider the de-correlation between the two EPs.

16



De-correlation between 1st
and 2nd order event planes

e |n the derivation of resolution, we have correction term R as:
R={(cos2A)

for Ist(2nd) order EP, the corresponding correction term becomes R, , <COS 2%, ‘P)>,

and for 2nd order EP with the consideration of de-correlation, the correction term can be written down as:
R,=(cos2(¥,-¥,+¥,-¥))=D, R,
where D, = (cos 2(%, ‘Pl)>

=)
N

=)
o

 Then we can take the corrected poo from
1st order EP as real poo, and use the
resolution correction formula to recover

cos2(V,-¥.)
o o

0.05

e
2nd order EP result: 0.04 .
a1 1+3R, 0 0 1
pjb‘(/i_g_ ( Zd__) 0.03
0.02 —* , e
ma 1 _ 1+ 3D12 ‘R, Ll 1) = Au+Au 200GeV
pobv 3 4 3 001;_._
w1 _ 143Dy, - R, It _ ! 07710 20030 40 50 6070 80
— pOO - ( ) .
3 1+ 3R, 3 Centrality(%)
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De-correlation results

s 0.4
= - Au+Au 200GeV
0.38 - Centrality 20-60%
0.36 - ¢ meson
- "
034 ™ .
iRl =l chb bk Bl Rl FlE b ol et
0.321 4 4 ++
0.3
0.28 :— —=— ]st order EP after de-correlation
0.26 :_ —e— 2rd order EP STAR preliminary
B | | | | I | | | | I | | | | I | | | | I | | | | I
0 1 2 3 4 5
pT(GeV/c)

* The de-correlation between 1st and 2nd-order events plane explains part of the difference.

* The remaining difference may be due to B=0 in the angular distribution (or other physics origin?):

dN
dcos0df

o<1+ Acos’ @ + Bsin’ 0 cos2B+Csin20 cos 3
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D VS. centrality

o 0.4
o° Au+Au 200 GeV
0.38 pT >1.2 GeV/e
. ¢ meson (1st order EP)
0.36 " & m @
’ I
034 ¥ = 7

I | 1 | T T 1T T T T T 1T Tl | 1T | 1T | 1T
—
[ —

0.32
0.3
0.28— STAR preliminary
0.26
0l - lll()l N l210l - l310l N l410l N l510l - l610l N l710l - l80

Centrality (%)
* Pog are around 1/3 at most central collisions.

* For non-central collisions, pgg are significantly higher than 1/3, supporting the
fragmentation scenario”?
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Dy VS. energy

QS 0.44—

- —=— 1st order EP

0.42 — —o— 2nd order EP
0.4

0.38 ;—

0.36/ { .

- @ o H
034 ¥ ﬁ) _________________________________________________
0.32 ;—

0.3 = STAR preliminary ¢ meson
0.28 — pT >1.2 GeV/c

- Centrality 20~60%

0.26 o | | | | | | | | I
10 10
| Sxy (GeV)

* oo are significantly higher than 1/3 at 39 and 200 GeV.
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summary

* Non-trivial dependence of pgp as a function of pr and centrality
has been observed with 1st-order event plane. At 200 GeV the
measured pgo is > 1/3 at pr ~ 1.5 GeV/c in non-central
collisions.

* For poo integrated from pt> 1.2 GeV/c, the deviation from 1/3
s found to be significant at 39 and 200 GeV.

* This is the first time pog > 1/3 being observed in heavy ion
collisions. Vorticity induced by initial global angular moments
and particle production from quark fragmentation are possible
sources that might contribute to the new observation.
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Comparing charged particle v-

S 04F T F
o 7L e 9 Y
% ) 355 . —_—— By 0.2l —— Charge particle v. Vs 1
LN _ - ——
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C —— _
_ ey _ ——
0.3 ==— 0.1— ——
5 - t+_
0.25— 1st order EP resolution 0 :_ l
E STAR preliminary —_— - i
0.2— B STAR preliminary
n 0.1 . |
0145 = Chensheng’s results (Run 11) ] - % Chensheng’s results —#;:
0.1 - " Gang Wang’s thesis results, UCLA (Run i" 02~ ™ Phys. Rev. Lett. 101 (2008) 252301 i
:llIllllllllllllllllllllllllllllllllllllllllll N N T TS NS T AT N T
0 1 2 3 4 5 6 7 8 -1 08 06 04 02 0 02 04 06 08 1
Centrality Bin n

Ist order event plane resolution
Gang’s thesis results : Run 4, Au-Au 200GeV
Our analysis: Run 11, Au-Au 200GeV
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- What to expect when using
random event plane

 Recall the formula for resolution correction:

real 1 4

1
e obv. _ —
Poo =73 1+3R(p00 3)

e For random event plane, L is random in the transverse plane, and R=0. Only when the real pq is 1/3,
the observed pgo from random event plane will become 1/3. Putting it in simple words, an irregular
shape won't become a ball when rotated around a fixed axis (z in this case). So the observed
random plane result will be closer to pgg =1/3, but hardly to be right at 1/3. With the resolution
correction formula (R=0), we can still obtain the real pq.

 Only when L can take any direction in space (not confined to the transverse plane), it becomes truly

L

random (3d-random) and the pyy becomes 1/3.

Rotation around z axis will
not necessarily make a

Ny round shape (strictly
speaking, not make a flat
distribution in cosB”)

rotate around z




g 0.45-
Q n
B Au+Au 39 GeV
0.4 - Centrality 20-60 %
"L | ¢ meson (1st order EP)
- ﬁ - b
0.35 ‘EP |
0.3 Ly
0.25—
E STAR preliminary
| | | | I | | | | I | | | | I | | | | I | | | | I
0'20 1 2 3 4 S
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