Search for the critical point of strongly interacting matter through power-law fluctuations of the proton density in NA61/SHINE

²UNIVERSITY OF ATHENS

CPOD 2017, 7 - 11 August 2017, Stony Brook University, USA

N. Davis (IFJ PAN)

Searching for QCD critical point

August 10, 2017 1 / 22

1 QCD Phase Diagram and Critical Phenomena

- 2 Method of analysis
- 3 Results for NA49 data analysis
- 4 NA61 light nuclei feasibility study
- 5 Conclusions and outlook

Phase diagram of QCD

• Objective: Detection / existence of the QCD Critical Point (CP)

• Look for observables tailored for the CP; Scan phase diagram by varying energy and size of collision system.

N. Davis (IFJ PAN)

Critical Observables; the Order Parameter (OP)

*[Y. Hatta and M. A. Stephanov, PRL91, 102003 (2003)]

Self-similar density fluctuations near the CP

Observing power-law fluctuations

Experimental observation of local, power-law distributed fluctuations
U
Intermittency in transverse momentum space (net protons at mid-rapidity)
(Critical opalescence in ion collisions*)

- Transverse momentum space is partitioned into *M*² cells
- Calculate second factorial moments
 *F*₂(*M*) as a function of cell size ⇔
 number of cells M:

 $F_2(M) \equiv rac{\sum\limits_m \langle n_m(n_m-1)
angle}{\sum \langle n_m
angle^2},$

where $\langle ... \rangle$ denotes averaging over events. *[F.K. Diakonos, N.G. Antoniou and G. Mavromanolakis, PoS (CPOD2006) 010, Florence]

N. Davis (IFJ PAN)

Searching for QCD critical point

August 10, 2017

6 / 22

Subtracting the background from factorial moments

- Experimental data is noisy ⇒ a background of uncorrelated/non-critical pairs must be subtracted at the level of factorial moments.
- Intermittency will be revealed at the level of subtracted moments $\Delta F_2(M)$.

Partitioning of pairs into critical/background

$$\langle n(n-1) \rangle = \underbrace{\langle n_c(n_c-1) \rangle}_{\text{critical}} + \underbrace{\langle n_b(n_b-1) \rangle}_{\text{background}} + \underbrace{2 \langle n_b n_c \rangle}_{\text{mixed term}}$$

$$\underbrace{\Delta F_2(M)}_{\text{correlator}} = \underbrace{F_2^{(d)}(M)}_{\text{data}} - \lambda(M)^2 \underbrace{F_2^{(b)}(M)}_{\text{background}} - 2 \underbrace{\lambda(M)}_{\text{ratio}} \underbrace{(1 - \lambda(M))}_{\langle n \rangle_d} f_{bc}$$

• The mixed term can be neglected for dominant background (non-trivial! Justified by CMC simulations)

N. Davis (IFJ PAN)

Searching for QCD critical point

Scaling of factorial moments - Subtracting mixed events

For $\lambda \lesssim 1$ (background domination), $\Delta F_2(M)$ can be approximated by:

$$\Delta F_2^{(e)}(M) = F_2^{\mathsf{data}}(M) - F_2^{\mathsf{mix}}(M)$$

For a critical system, ΔF_2 scales with cell size (number of cells, M) as:

 $\Delta F_2(M) \sim (M^2)^{\varphi_2}$

where φ_2 is the intermittency index.

Theoretical predictions for φ_2

$$\begin{cases} g_{2,cr}^{(\sigma)} = \frac{2}{3} (0.66 \dots) \\ g_{2,cr}^{(\sigma)} = \frac{2}{3} (0.66 \dots) \\ g_{2,cr}^{(\sigma)} = \frac{5}{6} (0.833 \dots) \\ g_{2,cr}$$

Statistical & systematic error handling in $F_2(M)$

 F₂(M) averaged over many lattice positions ↓
 smoothing of bin boundary effect

- Variations of original sample of events produced by resampling (bootstrap) method ⇒ sampling of events with replacement
- ΔF₂(M) calculated for each bootstrap sample; variance of sample values provides statistical error of ΔF₂(M) [W.J. Metzger, "Estimating the Uncertainties of Factorial Moments", HEN-455 (2004).]
- Distribution of φ₂ values, P(φ₂), and confidence intervals for φ₂ obtained by fitting individual bootstrap samples
 [B. Efron, *The Annals of Statistics* 7,1 (1979)]

Critical Monte Carlo (CMC) algorithm for baryons

- Simplified version of CMC* code:
 - Only protons produced
 - One cluster per event, produced by random Lévy walk: $\tilde{d}_{E}^{(B,2)} = 1/3 \Rightarrow \phi_2 = 5/6$
 - Lower / upper bounds of Lévy walks *p_{min,max}* plugged in.
 - Cluster center exponential in p_T , slope adjusted by T_c parameter.
 - Poissonian proton multiplicity distribution.

Input parameters

Parameter	$\textit{p}_{\min}\left(MeV\right)$	p_{\max} (MeV)	$\lambda_{Poisson}$	T_c (MeV)
Value	0.1 ightarrow 1	$800 \rightarrow 1200$	$\langle p angle_{ ext{non-empty}}$	163

* [Antoniou, Diakonos, Kapoyannis and Kousouris, Phys. Rev. Lett. 97, 032002 (2006).]

NA49 intermittency analysis of critical proton density

• T. Anticic et al., Eur. Phys. J. C 75:587 (2015), arXiv:1208.5292v5

Eur. Phys. J. C (2015) 75:587 DOI 10.1140/epjc/s10052-015-3738-5

Regular Article - Experimental Physics

Critical fluctuations of the proton density in A+A collisions at 158A GeV

T. Antick⁻¹¹, B. Bantar², J. Bartke⁶, H. Beck⁹, L. Betev¹⁰, H. Białkowska¹¹, C. Blume⁴, M. Boguaz²⁰, B. Beimska¹¹, J. Book⁹, M. Botje¹, P. Bunčk¹⁰, T. Cetnez⁴⁰, P. Christakoglou¹, O. Chvala¹⁴, J. Cramer¹⁵, V. Eckardt¹³, Z. Fodor⁴, P. Foka¹, V. Freise¹, M. Gatzicht^{20,11}, K. Grebieszkow³, C. Hohne¹, K. Kadija¹¹, A. Karev¹⁰, V. K. Kadisn¹⁰, T. Kodemikov¹, M. Kowalsk⁴, D. Kresan², A. Lazzko¹, M. van Leeuwen¹, M. Mictowiak², S. M. Morzyński¹¹, G. Piali¹, A. D. Panaglotou², W. Peryl², J. Puta²⁰, D. Prindle¹⁵, F. Pihlhofer¹², R. Renford¹⁰, C. Roland², G. Roland⁴, A. Rustamov⁹, M. Rybczyński¹¹, A. Rybick¹¹, A. Sandoval¹, N. Schmitz¹¹, T. Schuste², P. Svyboth¹¹, F. Sikle⁴, F. Strapzzak¹⁰, M. Stołkowsk¹⁰, G. Stefanek¹¹, R. Stock⁹, H. Ströbel⁹, T. Susz¹¹, M. Szuba²⁰, D. Varga¹, M. Vassiliou¹, G. I. Veres⁴, G. Vezztergombi¹¹, D. Vranić², Z. Wiodarzyt¹¹, A. Wojtarzek-Szwar²¹, M. Vassiliou¹¹, N. G. Antonio¹¹², K. Diakabar, K. K. Balabora¹², K. K. Balabar, K. B. Suba²¹, D. Varga¹¹, M. Vassiliou¹, G. I. Veres⁴, G. Vezztergombi¹¹, D. Vranić², Z. Wiodarzyt¹¹, A. Wojtarzek-Szwar²¹, M. Sasiliou¹¹, N. Satka¹¹, N. Suska¹¹, N. Satka¹¹, K. Staka¹¹, K

Abstract We look for fluctuations expected for the QCD critical point using an intermittency analysis in the transverse momentum phase space of protons produced around midrapidity in the 12.5 % most central C+C, SHS and Pb+Pb collisions at the maximum SPS energy of 158.4 CeV. We find evidence of power-law fluctuations for the SH site Si that. The fitted power-law exponent $\phi_2 = 0.9\sigma_{-0.25}^{+0.25}$ (stat.) ± 0.16 (syst.) is consistent with the value expected for critical fluctuations. Power-law fluctuations had previously also been observed in low-mass $\pi^+\pi^-$ pairs in the same Si+Si collisions. An intermittency analysis on 3 sets of NA49 collision systems at maximum SPS energy

 Factorial moments of proton transverse momenta analyzed at mid-rapidity (constant proton density)

Springer

Intermittency analysis results - NA49 "Si"+Si

- Evidence for intermittency in "Si"+Si but large statistical errors.
- No intermittency detected in the "C"+C, Pb+Pb datasets.
- Fit with $\Delta F_2^{(e)}(M\ ;\ \mathcal{C},\phi_2)=e^{\mathcal{C}}\cdot \left(M^2
 ight)^{\phi_2}$, for $M^2\geq 6000$

- Bootstrap distribution of ϕ_2 values is highly asymmetric due to closeness of $F_2^{(d)}(M)$ to $F_2^{(m)}(M)$.
- The spread is partly artificial due to pathological fits (negative $\Delta F_2(M)$ values in some bootstrap samples)

Noisy CMC (baryons) - estimating the level of background

- $F_2(M)$ of noisy CMC approximates "Si"+Si for $\lambda \approx 0.99$
- ΔF₂^(e)(M) reproduces critical behaviour of pure CMC, even though their moments differ by orders of magnitude!

 Noisy CMC results show our approximation is reasonable for dominant background.

N. Davis (IFJ PAN)

- NA49 analysis encourages us to look for intermittency in medium-sized nuclei, in the NA61 experiment.
- Intermittency analysis requires:
 - Large event statistics $\Rightarrow \sim 100 K$ events min., ideally $\sim 1 M$ events.
 - Reliable particle ID \Rightarrow proton purity should be \sim 80%, 90%.
 - Central collisions.
 - Adequate mean proton multiplicity in midrapidity (≥ 2)
- The NA61 experiment performs an (ongoing) scan for various colliding system sizes and collision energies.
- Of the presently available NA61 systems, we have performed a preliminary analysis for Be+Be data @ 150 GeV, as well as a feasibility study for intermittency in Ar+Sc @ 150 GeV.

Overview of ${}^{7}Be + {}^{9}Be$, ${}^{40}Ar + {}^{45}Sc @ 150 GeV$

Be+Be:

 Mean proton multiplicity density per event, in mid-rapidity – preliminary analysis of NA61 data suggests:

$$\left.\frac{dN_p}{dy}\right|_{|y_{CM}| \le 0.75, \, p_T \le 1.5} \sim 0.7$$

rather low $\Rightarrow \ge 1.5 \rightarrow 2$ needed

- Analysis of NA61 data in progress.
- Simulation through EPOS* would suggest:

$$\left. \frac{dN_p}{dy} \right|_{|y_{CM}| \le 0.75, \, p_T \le 1.5} \sim 4$$

for $b_{max} \sim 3.5 \Leftrightarrow \sim 10\%$ centrality; adequate for an intermittency analysis

*[K. Werner, F. Liu, and T. Pierog, Phys. Rev. C 74, 044902 (2006)]

Be+Be - NA61 data & CMC

- Collision parameters:
 - ^{7}Be (beam) + ^{9}Be (target)
 - 2 Beam energy: 150A GeV (target rest frame) $\Leftrightarrow \sqrt{s_{NN}} = 16.8$ GeV

$^{7}Be + {}^{9}Be$ NA61 data – proton p_{T} statistics

Centrality	#events	$\langle p \rangle_{ p_T \le 1.5}$ on Non-empty	GeV, y _{CM} ≤0.75 With empty	$\Delta p_{x,y}$
10%	166,215	1.48 ± 0.74	0.82 ± 0.92	0.38 - 0.49

CMC simulation parameters

Parameter	$p_{\min}\left(MeV ight)$	p_{\max} (MeV)	$\lambda_{Poisson}$	T_c (MeV)
Value	0.85	1200	0.76	163

• $\langle p \rangle$ in mid-rapidity remains low, except for very central collisions

Be+Be factorial moments – Data & Mixed events

- *F*₂(*M*) of data and mixed events overlap ⇒
- Subtracted moments ΔF₂(M) fluctuate around zero ⇒
- No intermittency effect is observed.

Be+Be factorial moments – Data & Noisy CMC

- F₂(M) of noisy CMC approximates Be+Be data for ~ 99.7% noise level.
- noisy CMC model vs Be+Be data ⇒ upper limit on fraction of critical protons in Be+Be data: ~ 0.3% critical component.

• Intermittency analysis sensitive enough to detect tiny subset with critical scaling; larger statistics needed to find signal or decrease upper limit.

N. Davis (IFJ PAN)

Simulating Ar+Sc – EPOS & CMC

- Simulation parameters:
 - ^{40}Ar (beam) + ^{45}Sc (target)
 - 2 Beam energy: 150A GeV (target rest frame) $\Leftrightarrow \sqrt{s_{NN}} = 16.8 \text{ GeV}$
 - Central collisions $\Rightarrow b_{max} = 3.5 \ fm$
 - Total number of simulated events: 100K

EPOS – proton p_T statistics								
	$b_{\sf max}$ #events $\langle p angle_{ p_{\mathcal{T}} \leq 1.5 \ GeV, y_{CM} \leq 0.75}$ Non-empty With empty					$\Delta p_{x,y}$		
	3.5	100,000	5.3	3 ± 2.5	5.3	3±2.4	0.490	
CMC simulation parameters								
Par	Parameter p_{\min} (MeV) p_{\max} (MeV) $\lambda_{Poisson}$ T_c (MeV)							eV)
<u>\</u>	/alue	0.41		120	0	5.3	163	}
• $\langle p \rangle$ in mid-rapidity acceptable for $b_{max} < 3.5$								

Noisy CMC, Ar+Sc – estimating the level of background

- $F_2(M)$ of noisy CMC approximates Ar+Sc EPOS for $\lambda \approx 0.995$
- \bullet Estimated level of critical protons fraction: $\sim 0.5\%$
- Correlator $\Delta F_2^{(e)}(M)$ has slope $\phi_2 = 0.75^{+0.12}_{-0.12}$

• CMC indicates that a signal would become visible in Ar+Sc for $\lambda \approx 0.995$.

N. Davis (IFJ PAN)

August 10, 2017 20 / 22

Summary and outlook

- Intermittency analysis of self-similar (power-law) fluctuations of the net baryon density in transverse momentum space provides us with a promising set of observables for detecting the location of the QCD critical point.
- Analysis of NA49 "Si" +Si @ 158 GeV central collisions reveals an estimated fraction of ~ 1% critical protons, with an estimated $\phi_{2,B} = 0.96^{+0.38}_{-0.25}$, overlapping with the critical QCD prediction. No significant intermittent behaviour in "C" +C, Pb+Pb @ 158 GeV.
- In NA61, preliminary analysis of Be+Be @ 150 GeV indicates an upper limit of $\sim 0.3\%$ critical protons, and Ar+Sc @ 150 GeV feasibility study a sensitivity level of $\sim 0.5\%$.
- We estimate an intermittency analysis to be feasible for (at least) the Ar+Sc system at maximum SPS energy. Expanding the analysis to other systems (Xe+La) and energies will hopefully lead to an accurate determination of the critical point location.

Thank you!

Acknowledgements

This work was supported by the National Science Centre, Poland under grant no. 2014/14/E/ST2/00018.

Back Up Slides

Split tracks; the q_{inv} cut in analysed datasets

- Split tracks can create false positive for intermittency ⇒ must be reduced or removed.
- q_{inv} -test distribution of track pairs: $q_{inv}(p_i, p_j) \equiv \frac{1}{2}\sqrt{-(p_i p_j)^2}$, p_i : 4-momentum of i^{th} track.
- Calculate ratio $q_{inv}^{data}/q_{inv}^{mixed} \Rightarrow \text{peak}$ at low q_{inv} (below 20 MeV/c): possible split track contamination.

- Anti-correlations due to F-D effects and Coulomb repulsion must be removed before intermittency analysis \Rightarrow "dip" in low q_{inv} , peak predicted around 20 MeV/c [Koonin, PLB 70, 43-47 (1977)]
- Universal cutoff of $q_{inv} > 25 \text{ MeV/c}$ applied to all sets before analysis.

N. Davis (IFJ PAN)

25 / 22

NA49 analysis – Δp_T distributions

• We measure correlations in relative p_T of protons via $\Delta p_T = 1/2\sqrt{(p_{X_1} - p_{X_2})^2 + (p_{Y_1} - p_{Y_2})^2}$

• Strong correlations for $\Delta p_T \rightarrow 0$ indicate power-law scaling of the density-density correlation function \Rightarrow intermittency presence

- We find a strong peak in the "Si" +Si dataset
- A similar peak is seen in the Δp_T profile of simulated CMC protons with the characteristics of "Si"+Si.

Improving calculation of $F_2(M)$ via lattice averaging

- Problem: With low statistics/multiplicity, lattice boundaries may split pairs of neighboring points, affecting $F_2(M)$ values (see example below).
- Solution: Calculate moments several times on different, slightly displaced lattices (see example)
- Average corresponding *F*₂(*M*) over all lattices. Errors can be estimated by variance over lattice positions.
- Lattice displacement is larger than experimental resolution, yet maximum displacement must be of the order of the finer binnings, so as to stay in the correct p_T range.

Improved confidence intervals for ϕ_2 via resampling

- In order to estimate the statistical errors of $\Delta F_2(M)$, we need to produce variations of the original event sample. This, we can achieve by using the statistical method of resampling (bootstrapping) \Rightarrow
 - Sample original events with replacement, producing new sets of the same statistics (# of events)
 - Calculate $\Delta F_2(M)$ for each bootstrap sample in the same manner as for the original.
 - The variance of sample values provides the statistical error of $\Delta F_2(M)$.

[W.J. Metzger, "Estimating the Uncertainties of Factorial Moments", HEN-455 (2004).]

Furthermore, we can obtain a distribution P(φ₂) of φ₂ values. Each bootstrap sample of ΔF₂(M) is fit with a power-law:

$$\Delta F_2(M; \mathcal{C}, \varphi_2) = e^{\mathcal{C}} \cdot (M^2)^{\varphi_2}$$

and we can extract a confidence interval for φ_2 from the distribution of values. [B. Efron, *The Annals of Statistics* **7**,1 (1979)]

N. Davis (IFJ PAN)

Searching for QCD critical point

Event & track cuts for Si+A

Event cuts:

Track cuts:

- $\bullet~\mbox{Iflag}=0$, $\mbox{chi}^2>0$
- Beam charge cuts (Al,Si,P)
- Vertex cuts:
 - $-0.4~\text{cm} \leq V_{X} \leq 0.4~\text{cm}$
 - $-0.5~\text{cm} \leq V_y \leq 0.5~\text{cm}$
 - $-580.3~\text{cm} \leq V_z \leq -578.7~\text{cm}$

- Iflag = 0
- Npoints ≥ 30 (for the whole detector)
- Ratio $\frac{Npoints}{NMaxPoints} \ge 0.5$
- ZFirst \leq 200
- Impact parameters: $|\mathsf{B}_{\mathsf{x}}| \leq \mathsf{2}, \ |\mathsf{B}_{\mathsf{y}}| \leq \mathsf{1}$
- dE/dx cuts for particle identification
- p_{tot} cuts (via dE/dx cut)
- rapidity cut

NA49 analysis - applied cuts and particle ID

- Cuts based on the standard set of event & track cuts used in NA49 experiment [Anticic et al., PRC,83:054906 (2011)]
- Beam components merged for analysis in "Si"+Si, "C"+C
- Quality cuts to minimize split track effect
- Proton identification through cuts in particle energy loss dE/dx vs p_{TOT} :
 - Inclusive dE/dx distribution fitted in 10 bands of $\log[p_{TOT}/1\text{GeV/c}]$
 - Fit with 4 gaussian sum for $\alpha = \pi$, K, p, e
 - Probability for a track with energy loss x_i of being a proton:

$$P = f^{p}(x_{i}, p_{i}) / (f^{\pi}(x_{i}, p_{i}) + f^{K}(x_{i}, p_{i}) + f^{p}(x_{i}, p_{i}) + f^{e}(x_{i}, p_{i}))$$

N. Davis (IFJ PAN)

Searching for QCD critical point

- Events may contain split tracks: sections of the same track erroneously identified as a pair of tracks that are close in momentum space.
- Intermittency analysis is based on pairs distribution ⇒ split tracks can create a false positive, and so must be reduced or removed.
- Standard cuts remove part of split tracks. In order to estimate the residual contamination, we check the *q*_{inv} distribution of track pairs:

$$q_{inv}(p_i,p_j)\equiv rac{1}{2}\sqrt{-(p_i-p_j)^2},$$

- p_i : 4-momentum of i^{th} track.
- We calculate the ratio of q^{data}_{inv} / q^{mixed}_{inv}. A peak at low q_{inv} (below 20 MeV/c) indicates a possible split track contamination that must be removed.

Simulating non-critical Be+Be – EPOS

Simulation parameters:

- ⁷Be (beam) + ${}^{9}Be$ (target)
- 2 Beam energy: 150A GeV (target rest frame) $\Leftrightarrow \sqrt{s_{NN}} = 16.8$ GeV
- Central collisions $\Rightarrow b_{max} = 2.0 \ fm$
- Total number of simulated events: 200K

b_{\max}	#events	$\langle p angle_{ p_T \leq 1.5}$ c	GeV, y _{CM} ≤0.75	$\Delta p_{x,y}$
		Non-empty	With empty	
2.0	200,000	1.41 ± 0.69	$\textbf{0.66} \pm \textbf{0.85}$	0.42
1.8	162,231	1.43 ± 0.70	0.69 ± 0.87	0.42
1.6	128,216	1.44 ± 0.71	0.72 ± 0.88	0.42
1.4	98,137	1.46 ± 0.73	0.74 ± 0.90	0.42-0.43
1.2	72,267	1.47 ± 0.73	0.76 ± 0.91	0.42-0.43
1.0	50,093	1.48 ± 0.74	0.78 ± 0.92	0.43

Simulating non-critical Be+Be – EPOS, y vs pT

• $\langle p \rangle$ in mid-rapidity remains low, except for very central collisions

N. Davis (IFJ PAN)

Searching for QCD critical point

August 10, 2017 33 / 22

Be+Be – Event & Track cuts

Event cuts

- Target IN/OUT,
- BPD status,
- BPD extrapolation,
- Beam position,
- S1 vs. Z,
- BPD charge vs. Z,
- Z off-time,
- WFA particles (4.5 µs),
- WFA interaction,
- T2 trigger,
- Vertex track fitted to the main vertex,
- Vertex fit quality = ePerfect,

Track cuts

- Track status,
- Charge ± 1 ,
- Impact point [±4cm; ±2cm],
- Total number of clusters,
- VTPCs+GapTPC clusters,
- dE/dx clusters,
- proton selection (dE/dx vs p_{tot} cut)
- 3.16 GeV/c $\leq p_{tot} \leq$ 100 GeV/c

Be+Be - dE/dx vs p_{tot} cut (proton ID)

- Avoid p_{tot} region where Bethe-Bloch curves overlap (3.16 GeV/c ≤ p_{tot} ≤ 100 GeV/c)
- Everything below proton Bethe-Bloch accepted
- Selection band based on contour between p, K Bethe-Bloch curves.
- (Ideally, dE/dx 4-gaussian fits should be used in p_{tot}-p_T slices e.g. M. van Leeuwen's code. Not used due to time constraints – results should be taken with a grain of salt!)

$Be+Be - q_{inv}$ distribution of proton pairs & q_{inv} cut

 Distribution of q_{inv} pairs comparable to NA49 "C"+C, "Si+Si @ 158A GeV

• The same cut of $q_{inv} \ge 25 \text{ MeV/c}$ as in NA49 data sets applied.

Be+Be – Δp_T distribution of proton pairs (after q_{inv} cut)

Be+Be – Comparison of data with EPOS simulation

• p_T & mean proton multiplicities of data & EPOS almost coincide.

EPOS – proton p_T statistics

b_{\max}	#events	$\langle p angle_{ p_T \leq 1.5}$ on Non-empty	GeV, y _{CM} ≤0.75 With empty	$\Delta p_{x,y}$
1.0	50,093	1.48 ± 0.74	0.78 ± 0.92	0.43

$^{7}Be + ^{9}Be$ NA61 data – proton p_{T} statistics						
	Centrality	#events	$\langle p angle_{ p_{T} \leq 1.5}$ CNON-EMPTY	GeV, y _{CM} ≤0.75 With empty	$\Delta p_{x,y}$	
	10%	166,215	1.48 ± 0.74	0.82 ± 0.92	0.38 - 0.49	

• "Noisy" CMC simulations calibrated for EPOS can be reused with Be+Be data safely.

N. Davis (IFJ PAN)

$^{7}Be + ^{9}Be - distributions$

N. Davis (IFJ PAN)

Searching for QCD critical point

Simulating non-critical Ar+Sc – EPOS

• Simulation parameters:

- ^{40}Ar (beam) + ^{45}Sc (target)
- 2 Beam energy: 150A GeV (target rest frame) $\Leftrightarrow \sqrt{s_{NN}} = 16.8$ GeV
- Central collisions $\Rightarrow b_{max} = 3.5 \ fm$
- Total number of simulated events: 100K

<i>b</i> _{max}	#events	$\langle p angle_{ p_T \leq 1.5}$ on Non-empty	GeV, y _{CM} ≤0.75 With empty	$\Delta p_{x,y}$
3.5	100,000	5.3 ± 2.5	5.3 ± 2.4	0.490
3.0	73,452	5.6 ± 2.5	5.7 ± 2.5	0.495
2.5	50,891	5.9 ± 2.5	6.0 ± 2.5	0.495
2.0	32,591	6.2 ± 2.5	6.2 ± 2.5	0.500
1.5	18,345	$\textbf{6.4} \pm \textbf{2.6}$	6.5 ± 2.6	0.500
1.0	8,285	6.6 ± 2.6	6.5 ± 2.6	0.500
0.5	2,032	$\boldsymbol{6.7\pm2.7}$	6.8 ± 2.7	0.500

Simulating non-critical Ar+Sc – EPOS, y vs pT

• $\langle p \rangle$ in mid-rapidity acceptable for $b_{max} \leq 3.5$

N. Davis (IFJ PAN)

Searching for QCD critical point

August 10, 2017 45 / 22

Can jets "fake" intermittency effect?

*[K. Werner, F. Liu, and T. Pierog, Phys. Rev. C 74, 044902 (2006)]

- EPOS event generator^{*} includes high-p_T jets ⇒ possible spurious intermittency by non-critical protons.
- We simulate 630K Si+Si EPOS events:
 - Z=14, A=28, for both beam and target
 - 2 $b_{max} = 2.6 \text{ fm} (12\% \text{ most central})$

$$\sqrt[3]{s_{NN}} = 17.3 \text{ GeV}$$

- Appidity cuts as in NA49 data
- Intermittency analysis (data & mixed events) repeated for EPOS.
- EPOS clearly cannot account for intermittency presence $\Rightarrow \Delta F_2(M)$ fluctuates around zero.