Presence of Non-dynamical Fluctuations in the Higher Moments of Net-proton Measurements

Prakhar Garg

Department of Physics and Astronomy

Stony Brook University

OUTLINE

Brief Introduction

Sources of Non-dynamical Fluctuations

H MC studies for stopped protons and pile-up contributions

Conclusion

BES Motivation: CEP

- ***** The temperature driven transition at zero μ_B indicate a rapid crossover from the hadronic phase to the QGP phase.
- * The μ_B driven transition at finite T is a first order phase transition.
- A first order line originating at zero T must end somewhere in the midst of the phase diagram where the phase transition is a crossover

This end point of a first order phase transition. líne is a critical end point (CEP)

Fluctuations: Theory to Experimental observables are performed using cumulants

• Cumulants of fluctuations of conserved quantities are related to thermodynamic susceptibilities (Lattice QCD and Hadron Resonance Gas (HRG) model)

1st moment:

mean µ=<x>

*2nd cumulant: variance κ₂= σ²=<(x-μ)²> *3rd cumulant: κ₃= μ₃=<(x-μ)³> *3rd standardized cumulant: skewness = S= κ₃/κ₂^{3/2}=<(x-μ)³>/σ³ *4th cumulant: κ₄= <(x-μ)⁴>-3κ₂² *4th standardized cumulant: kurtosis = κ=κ₄/κ₂²={<(x-μ)⁴>/σ⁴}-3

Calculate moments from the event-by-event net-multiplicity distribution $\Delta N = N^+ - N^-$

$$\frac{\kappa_2}{\kappa_1} = \frac{\sigma^2}{\mu} = \frac{\chi_2}{\chi_1}$$

$$\frac{\kappa_4}{\kappa_2} = \kappa \sigma^2 = \frac{\chi_4}{\chi_2}$$

$$\frac{\kappa_3}{\kappa_2} = S\sigma = \frac{\chi_3}{\chi_2}$$

Cumulant ratios are Independent of Volume

M.Cheng et al, Phys. Rev. D 79, 074505 (2009) F. Karsch and K. Redlich, Phys. Lett. B 695, 136 (2011)⁴

Prakhar Garg: CPOD 2017

Sources of Non-dynamical Fluctuations

\odot	Effect of phase-space acceptance:	P. Garg, D. K. Mishra et al. (Phys. Lett. B 726 (2013) 691-696)
		Frithjof Karsch el al. Phys. Rev. C 93(2016), 034907
\odot	Effect of e-by-e eficiency corrections:	P. Garg, D. K. Mishra et al. (J. Phys. G 40 (2013) 055103)
		A. Bzdak and V. Koch, Phys. Rev. C 86 (2012), 044904
		A. Bzdak and V. Koch, Phys. Rev. C 91 (2015) 027901
\odot	Effect of non-extensive statistics:	D. K. Mishra, P. Garg et al. (J. Phys. G 42 (2015), 105105)
\odot	Ensemble dependence:	P. Garg, D. K. Mishra et al. (Eur. Phys. J. A52 (2016), 27)
\odot	Effect of correlations on cumulants:	P. Garg, D. K. Mishra et al. (Phys. Rev. C 93 (2016), 024918)
\odot	Effect of Resonance Decay:	D. K. Mishra, P. Garg et al. (Phys. Rev. C 94 (2016), 014905)
		Marlene Nahrganget al. Eur. Phys. J. C (2015) 75:573
\odot	Effect of Participant Fluctuations:	P. Braun-Munzinger et al. (NPA 960 (2017) 114)
\odot	Global baryon number conservation:	P. Braun-Munzinger et al. (PLB 747 (2015) 292)

• AND SO ON

In this talk (for net-proton fluctuation measurements)

Effect of stopped proton Fluctuations -> D. K. Mishra & P. Garg arXiv:1706.04012

and

D. Thakur, S. Jakhar, P. Garg et al. (Phys.Rev. C95 (2017), 044903)

Effect of event Pile-up ->

P. Garg & D. K. Mishra <u>arXiv:1705.01256</u>

Baryon Stopping Part I: Ion collision Quarks, gluons freed Plasma created Ions about to collide **C**ccurrence of high energy density regions: Large amount of energy is deposited -> Baryon rich Quark Gluon Plasma (@ low Vs_{NN}) in a small region of space in a short -> Baryon free Quark Gluon Plasma (@ high Vs_{NN}) duration of time.

At RHIC BES-I Energies: Inclusive protons contain produced protons and stopped protons Number of stopped protons fluctuate e-by-e leading to additional fluctuations *Need* to disentangle the contribution of stopped protons and produced protons Experimentally difficult to tag stopped proton and produced proton Prakhar Garg: CPOD 2017

Get proton and anti-proton distributions by tuning with STAR cumulants data for Au+Au collisions

The Binomial expectations are tuned for proton and anti-proton cumulants data at each Vs_{NN}

The cumulants in data are already corrected for efficiency and finite bin width effects

Comparison of Stopped Protons with STAR results

Phys.Rev. C95 (2017), 044903

 $N_{\text{stopped}}^{\text{protons}}(\text{STAR}) = 158 \times N_{\text{stopped}}^{\text{protons}} \% \times N_{p_T}^{\text{protons}} \%$ Phys. Lett. B 690,358(2010)

(a) $\sqrt{s_{NN}}$	(b) $N_{\text{stopped}}^{\text{protons}}(\text{STAR})$	(c) $N_{ m STAR}^{ m protons}$	(d) Diff.	(e) $N_{ m STAR}^{ m antiprotons}$	
7.7	17.21 ± 0.86	18.92 ± 0.01	1.71 ± 0.86	0.165	
11.5	12.89 ± 0.86	15.00 ± 0.01	2.10 ± 0.86	0.49	
19.6	9.73 ± 0.80	11.37 ± 0.00	1.63 ± 0.80	1.15	
27.0	7.61 ± 0.73	9.39 ± 0.00	1.78 ± 0.73	1.65	
39.0	5.78 ± 0.65	8.22 ± 0.00	2.44 ± 0.65	2.38	
62.4	3.78 ± 0.54	7.25 ± 0.00	3.47 ± 0.54	3.14	
200	$1.54~\pm~0.33$	5.664 ± 0.00	$4.12~\pm~0.33$	4.11 ST	

STAR DATA: https:// drupal.star.bnl.gov/STAR/files/ starpublications/205/data.html

- A large contribution of stopped protons at BES energies.
- After subtracting the stopped protons from the mean of STAR protons distribution, remaining produced protons are consistent with mean of anti-proton distribution measured by STAR.

Method: Extract the weight factors

Phys.Rev. C95 (2017), 044903

$\sqrt{s_{NN}}$ (GeV)	7.7	11.5	19.6	27	39	62.4	200
Incl. proton 18.9	18 ± 0.009 15.	005 ± 0.006 11	1.375 ± 0.003 §	9.390 ± 0.002	8.221 ± 0.001	7.254 ± 0.002	5.664 ± 0.001
anti-proton 0.16	$65 \pm 0.001 0.4$	90 ± 0.001 1	$.150 \pm 0.001$ (1.652 ± 0.001	2.379 ± 0.001	3.135 ± 0.001	4.116 ± 0.001
stopped proton 17.	21 ± 0.86 12	$.89 \pm 0.86$	9.73 ± 0.80	7.61 ± 0.73	5.78 ± 0.65	3.78 ± 0.54	1.54 ± 0.33

Cumulants and their ratios for individuals

arXiv:1706.04012

At lower collision energies, the p^{incl} fluctuations are dominated by p^{stop} and at higher energies they are dominated by produced proton fluctuations.

Cumulants and their ratios for net-protons

 \succ Corrections for stopped proton fluctuation may enhance the signal as can be seen for C₃₂

arXiv:1706.04012

Part II: Event Pile-up Effects

In high luminosity heavy-ion collisions, there may be following sources of the background events during a collision

- In-time pile-up: If more than one collisions are occurring in the same bunch-crossing in a collision of interest;
- Out-of-time pile-up: If additional collisions are occurring in a bunch-crossing before and after the collision.
- Cavern background: Mainly low energy neutrons and photons
- Beam halo events: The dispersion in the beam
- Beam gas events: Collisions between the bunch and the residual gas inside the beam-pipe.

Ref: Harnarine Ian, "A Study of Pile-up in 200 GeV Au+Au Collisions at RHIC", Doctoral dissertation, University of Illinois at Chicago, 2005. and references therein.

Simple MC for event pile-up study

arXiv:1705.01256

Central + Minimum Bias event as pile-up

arXiv:1705.01256

More important for higher cumulants!!

Central + Minimum Bias event as pile-up

arXiv:1705.01256

Most Extreme Situation (Central + Central event as a pile-up)

Conclusion

Stopped Proton Fluctuations may have significant effect on the net-proton measurements which needs to be addressed carefully.

Event-pile up can also influence the Fluctuation Measurements and should be studied in each experimental set-up for cumulants observable.