Lifshitz points in smectics, gravity, and the Beam Energy Scan RDP, V. Skokov, & A. Tsvelik, work in progress

- 1. When is QCD quarkyonic? Chiral spirals ~ liquid crystal
- 3. Usual phase diagram & critical dimensions
- 4. Chiral Spirals in mean field theory: Lifshitz point
- 5. Effective reduction to 1-dimension, Brazovski 1st order transition
- 6. Pseudo-Lifshitz point and fluctuations
- 7. Phase diagram with fluctuations: *two* critical points in QCD?
- 8. Fluctuations from a pseudo-Lifshitz point at the Beam Energy Scan?

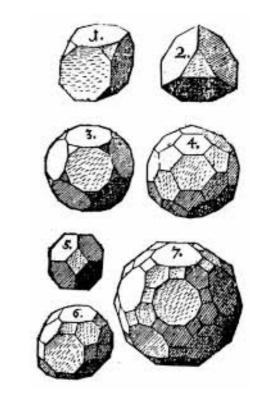
Quarkyonic & 1-D patches

Cold, quark matter as "Quarkyonic" matter: McLerran & RDP 0706.2191 Fermi surface ~ *confined*, deep in Fermi sea ~ perturbative

Valid at large N_c : $N_c = 3$? At T $\neq 0$, $\mu = 0$: $\Lambda_{ren} \sim 2 \pi T$ We suggest: T = 0, $\mu \neq 0$: quarkyonic for $\mu_{quark} < 1$ GeV, for *any* N_c , N_f At $\mu \neq 0$, T << μ confining potential ~ $1/(p^2)^2$ tends to form 1-dim *patches* Kojo, Hidaka, McLerran & RDP 0912.3800; Kojo, Hidaka, Fukushima, McLerran, RDP 1107.2124 +...

Width of patch ~ Λ_{QCD} , so for large μ , Fermi surface is covered with patches

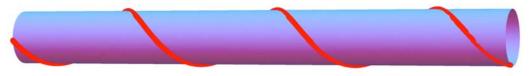
At T = 0, phase transitions as number/geometry of patches increases: Series of (weak) first order transitions? Analogous to Kepler's perfect solids...



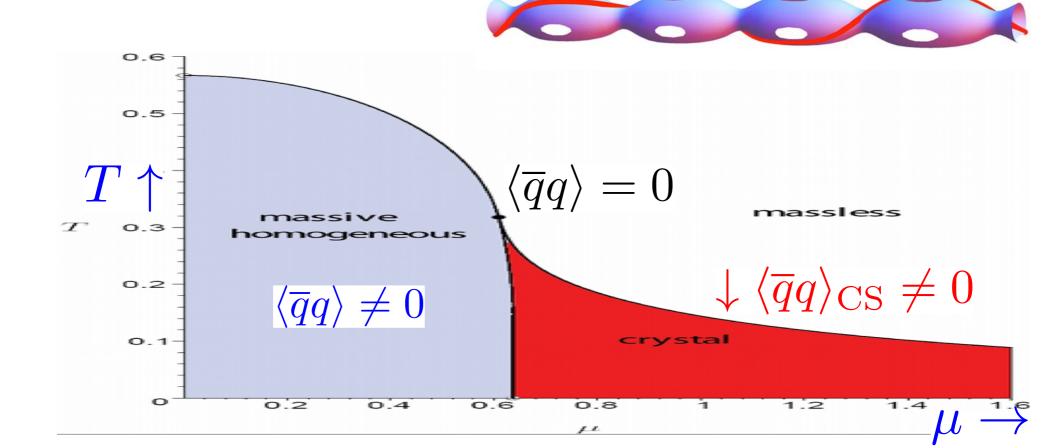
Chiral Spirals in 1+1 dimensions

Chiral Spiral (CS) ~ Migdal's pion condensate:

 $(\sigma, \pi^0) = f_\pi(\cos(k_0 z), \sin(k_0 z))$



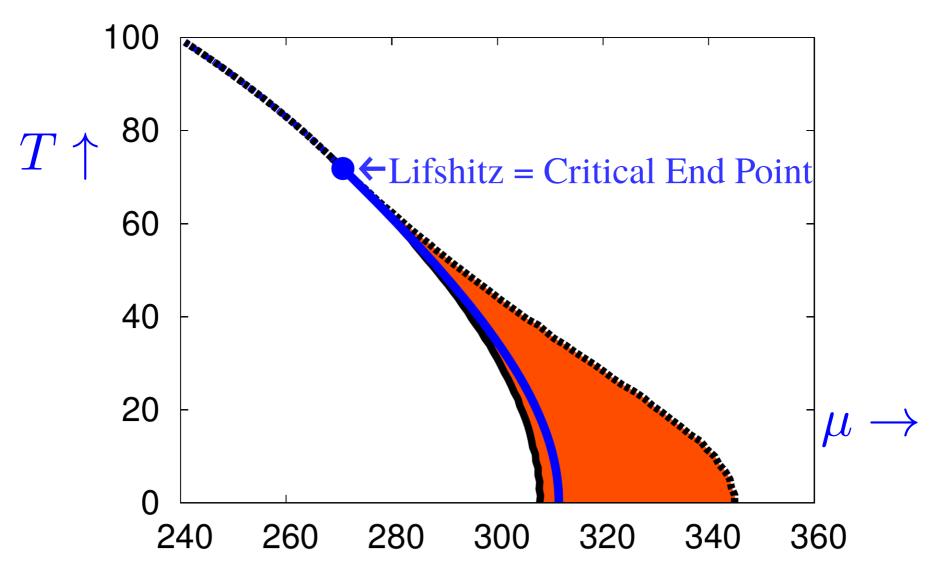
Ubiquitous in 1+1 dimensions:Basar, Dunne & Thies, 0903.1868; Dunne & Thies 1309.2443+ ... *Wealth* of exact solutions, phase diagrams...



Chiral Spirals in 3+1 dimensions

In 3+1, *common* in NJL models:Nickel, 0902.1778 +Buballa & Carignano 1406.1367 + ...

Other CS's possible, between $\sigma \& \overline{q}\gamma_0\gamma_z\gamma_5 q$



Fluctuations in Chiral Spirals

In Chiral Spiral, $\langle \phi \rangle \neq 0$ *locally* but $\langle \phi \rangle = 0$ *globally*.

Spon. breaking of global symmetry => interactions of Goldstone Bosons ~ ∂^2

In CS, spon. bkg's of global *plus* rotational sym. implies interactions in transverse momenta ~ ∂_{\perp}^2 *cancel*. Interactions ~ $(\partial_{\perp}^2)^2 \sim \partial_{\perp}^4$. U = GB:

$$\mathcal{L}_{\rm CS} = f_{\pi}^2 |(\partial_z - ik_0)U|^2 + \kappa |\partial_{\perp}^2 U|^2 + \dots$$

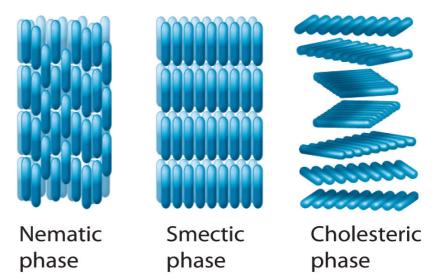
Hidaka, Kamikado, Kanazawa & Noumi 1505.00848; Nitta, Sasaki & Yokokura 1706.02938 Transverse fluctuations *dis*order: *large* fluctuations about $k_z \sim k_0$:

$$\int d^2 k_{\perp} \, dk_z \, \frac{1}{(k_z - k_0)^2 + (k_{\perp}^2)^2} \sim \int d^2 k_{\perp} \, \frac{1}{k_{\perp}^2} \sim \log \Lambda_{\rm IR}$$

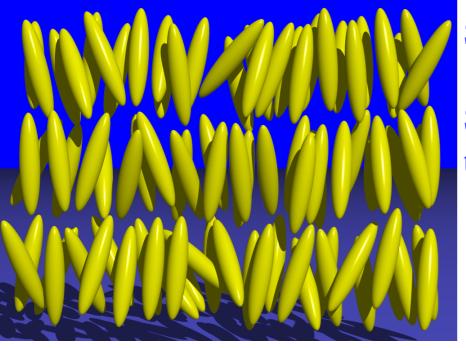
No true long range order (Landau-Peierls) ~ *smectic liquid crystal*

Varieties of liquid crystals

Nematics: rotational ordering (vector with no direction) Smectic: rotational ordering and in planes disordered in the planes ("liquid") Cholesteric: chiral ordering (with twist)



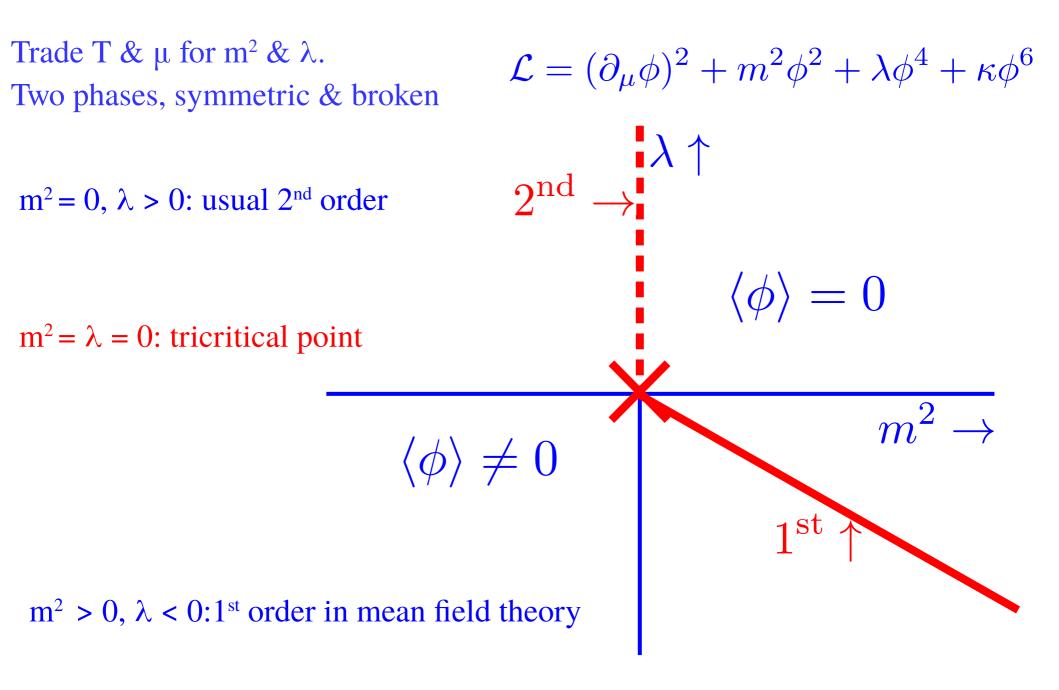
Increasing opacity



Smectic something like patches in QCD

Smectic – nematic transition has analogy, to follow (1st order from reduction to 1-dim)

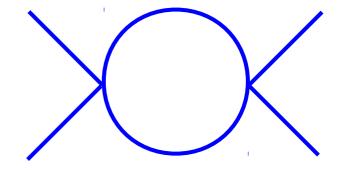
Standard phase diagram



Usual critical dimensions

 φ^4 : $d_{upper} = 4$: expand in $d = 4 - \varepsilon$ dimensions

$$\int d^4k \; \frac{1}{(k^2)^2} \sim \log \Lambda_{\rm UV}$$

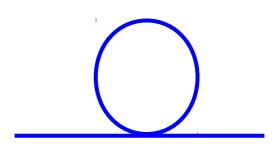


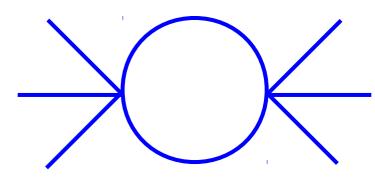
 φ^4 : $d_{lower} = 2$: expand in 2 + ε dimensions always disordered when d < 2

$$\int d^2k \ \frac{1}{k^2} \sim \log \Lambda_{\rm IR}$$

 φ^6 : $d_{critical} = 3$: at tricritical point, log corrections

$$\int d^3k_1 \int d^3k_2 \, \frac{1}{(k_1)^2 (k_2)^2 (k_1 + k_2)^2} \sim \log \Lambda_{\rm UV}$$





Lifshitz points

To get a Chiral Spiral (CS):

$$\mathcal{L}_{CS} = (\partial_0 \phi)^2 + Z(\partial_i \phi)^2 + \frac{1}{\Lambda^2} (\partial_i^2 \phi)^2 + m^2 \phi^2 + \lambda \phi^4$$

Need higher (spatial) derivatives for stability. Then CS occurs when Z < 0. Can*not* have higher derivatives in time or theory is acausal. In gravity, models with higher derivatives are renormalizable:

$$\mathcal{L}_{\text{ren.gravity}} = \frac{1}{16\pi G} R + \alpha_1 R^2 + \alpha_2 R_{\mu\nu}^2$$

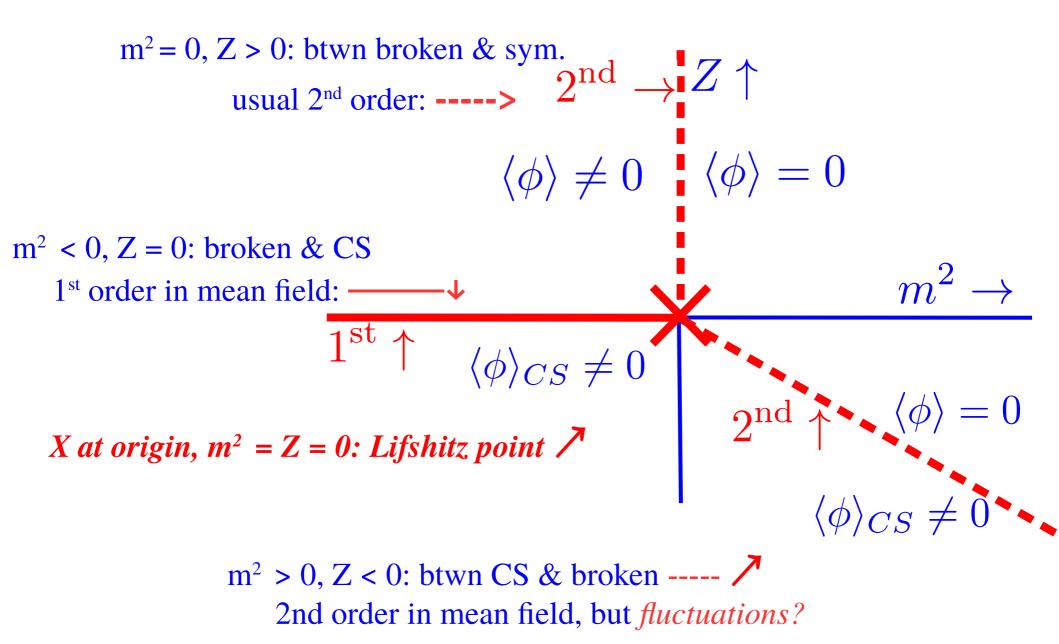
but acausal. Hořava-Lifshitz gravity: add higher derivatives only in space Hořava 0901.3775 + ...

$$\mathcal{L}_{\text{Horava-Lifshitz}} = \frac{1}{16\pi G}R + \beta_1 R_{ij}^2 + \dots$$

Only two time derivatives, so causal. Flows into Einstein gravity in the infrared.

Lifshitz phase diagram in mean field theory

Phase diagram in Z & m²: *three* phases, symmetric, broken, *and* Chiral Spiral Hornreich, Luban, Shtrikman, PRL '75, Hornreich J. Magn. Matter '80...Diehl, cond_mat/0205284 + ...



Symmetric to CS: 1D (Brazovski) fluctuations

Consider m² > 0, Z < 0: minimum in propagator at *non*zero momentum Brazovski '75; Hohenberg & Swift '95 + ... ;

Lee, Nakano, Tsue, Tatsumi & Friman, 1504.03185; Yoshiike, Lee & Tatsumi 1702.01511

$$\Delta^{-1} = m^2 + Zk^2 + k^4 / \Lambda^2$$

~ $m_{\text{eff}}^2 + (k - k_0)^2 + \dots$

Reduction from 3 to 1 dimension, along the *radial* direction:

$$\uparrow \Delta^{-1}(k)$$

$$k \to k$$

$$\int d^3k \; \frac{1}{(k-k_0)^2 + m_{\text{eff}}^2} \sim k_0^2 \int \frac{d(k-k_0)}{(k-k_0)^2 + m_{\text{eff}}^2} \sim \frac{1}{m_{\text{eff}}}$$

Effective reduction to 1-d for any spatial dimension d, any global symmetry

1st order transition in 1-dim.

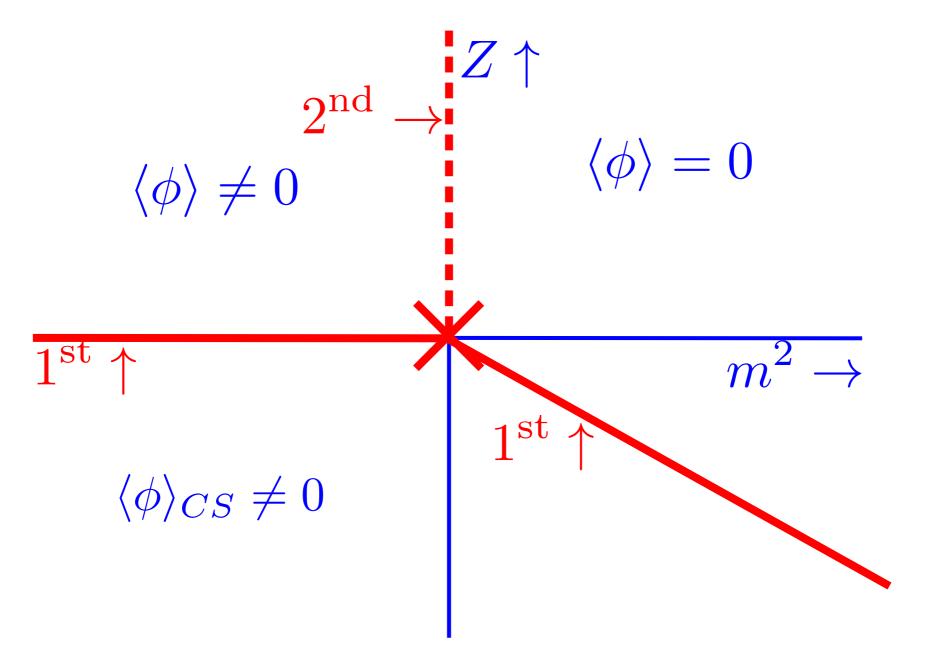
Strong infrared fluctuations in 1-dim., both in the mass:

mass dimensions made up by ~ Λ^2

Cannot tune m² to 0, λ goes negative, so 1st order trans. induced by fluctuations

Not like other 1st order fluc-ind'd trans's: just that in 1-d, $m_{eff}^2 \neq 0$

Lifshitz phase diagram, with eff. 1-D fluc.'s



What about fluctuations at the Lifshitz point?

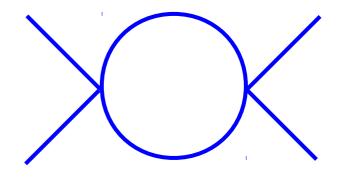
Critical dimensions at the Lifshitz point

At the Lifshitz point, Z=m=0, massless propagator ~ $1/k^4$

$$\mathcal{L}_{\text{Lifshitz}} = (\partial^2 \phi)^2 + \lambda \phi^4$$

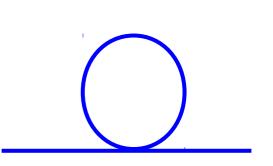
 $d_{upper} = 8$: expand in $d = 8 - \varepsilon$ dimensions

$$\int d^8k \; \frac{1}{(k^4)^2} \sim \log \Lambda_{\rm UV}$$



 $d_{lower} = 4$: expand in $d = 4 + \varepsilon$ dimensions

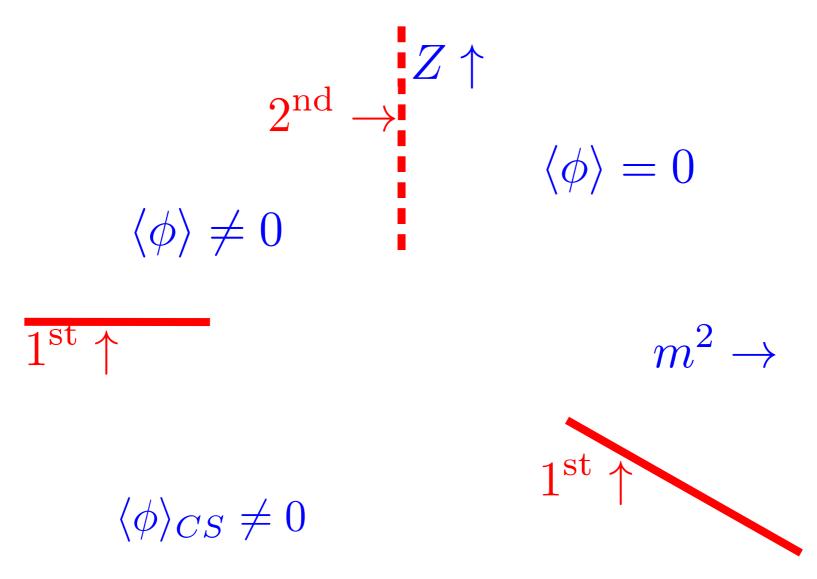
$$\int d^4k \; \frac{1}{k^4} \sim \log \Lambda_{\rm IR}$$



d = 3 < d_{lower}: there is *NO* (isotropic) Lifshitz point in *three* dimensions ...+ Bonanno & Zappala, 1412.7046; Zappala, 1703.00791 Infrared fluctuations *always* generate a mass gap *dynamically*.

Phase diagram without a Lifshitz point?

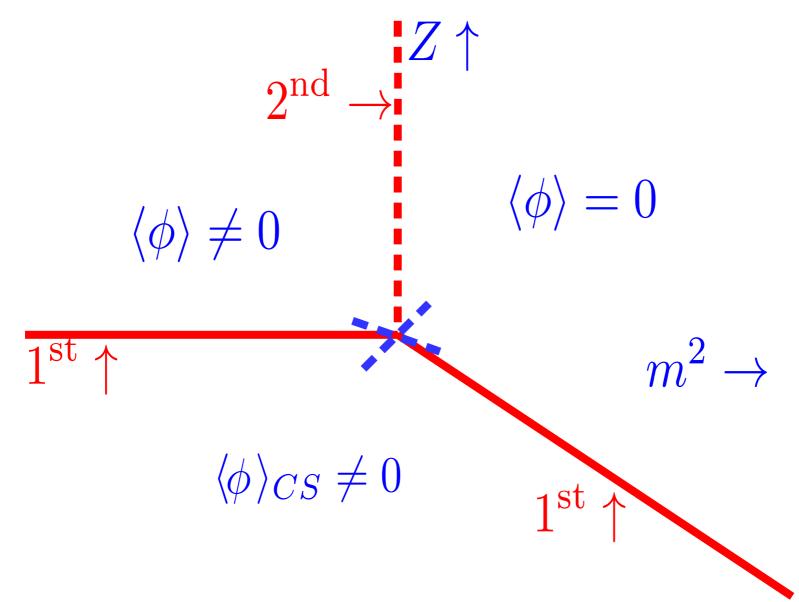
Have three phases, three lines of phase transition far from the would be Lifshitz point. *How can they connect?*



A: looks like Lifshitz point, but isn't

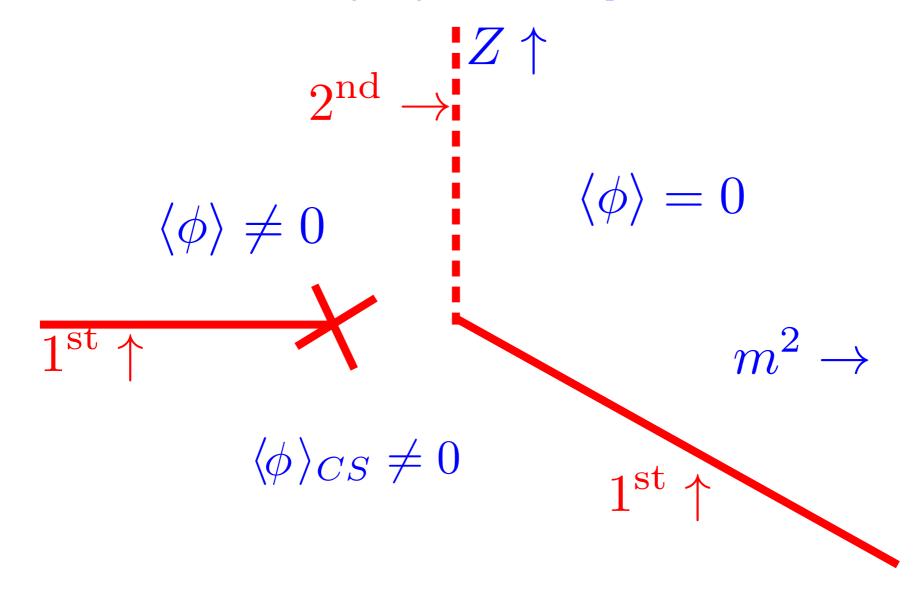
All three lines connect at a "pseudo"-Lifshitz point.

As terminus of 2nd order line, $m^2 = 0$. So at pseudo-Lifshitz point, $Z \neq 0$ Why do fluctuations drive symmetric-CS transition 1st order if $Z \neq 0$?



B: 1st order line between broken/CS phases ends

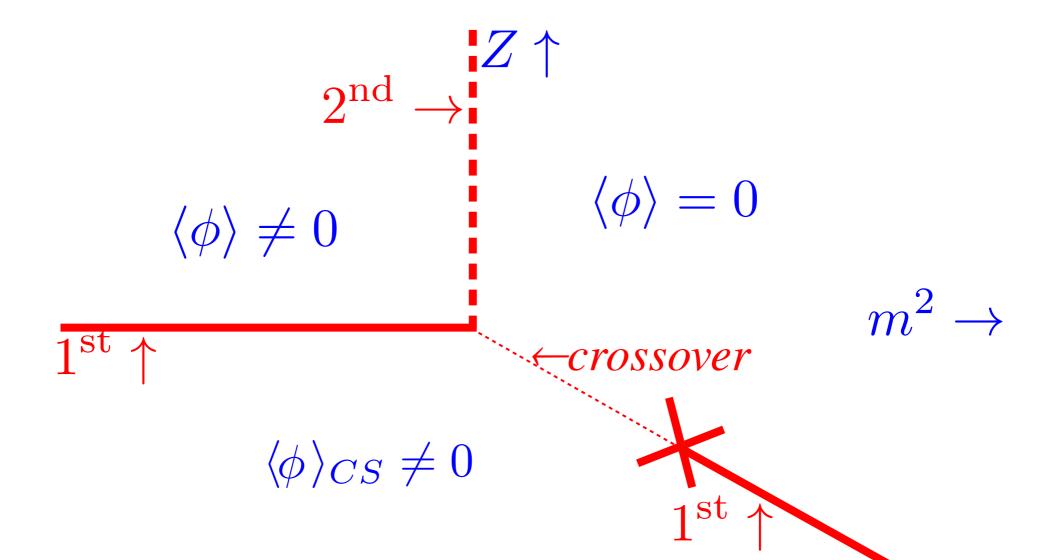
Crossover between broken and CS phases? But $\langle \phi \rangle \neq 0$ in the broken phase, and $\langle \phi \rangle = 0$ for a Chiral Spiral. Crossover seems unlikely, unless fluctuations are *small* (so long range order in CS phase)



C: Brazovski 1st order CS/sym. line ends

Chiral spiral has *no* long range order, so *when* fluctuations are large, possible to have just *crossover* between CS & symmetric phases. Brazikovski 1st order line ends in critical endpoint.

Novel tricritical point where 2nd order line joins to 1st order, at small Z.

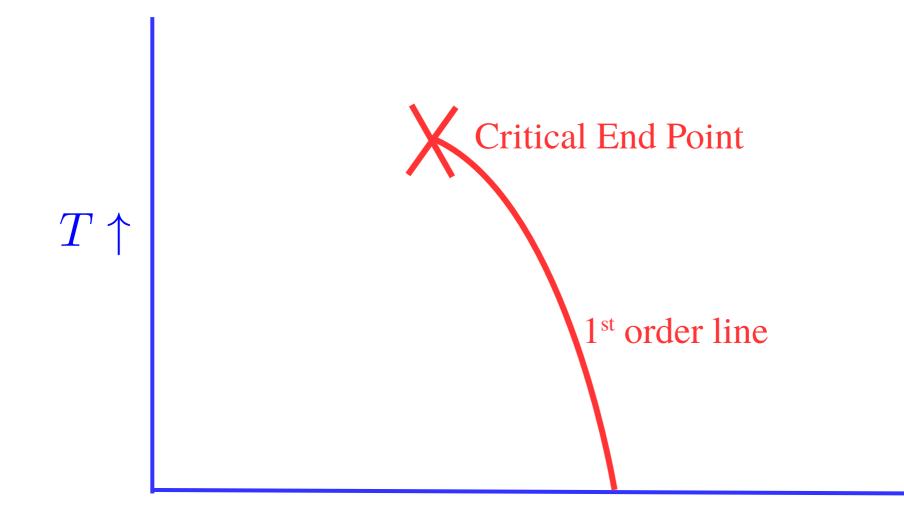


Phase diagram for QCD in T & μ : usual picture

Two phases, one Critical End Point (CEP)

between crossover and line of 1st order transitions

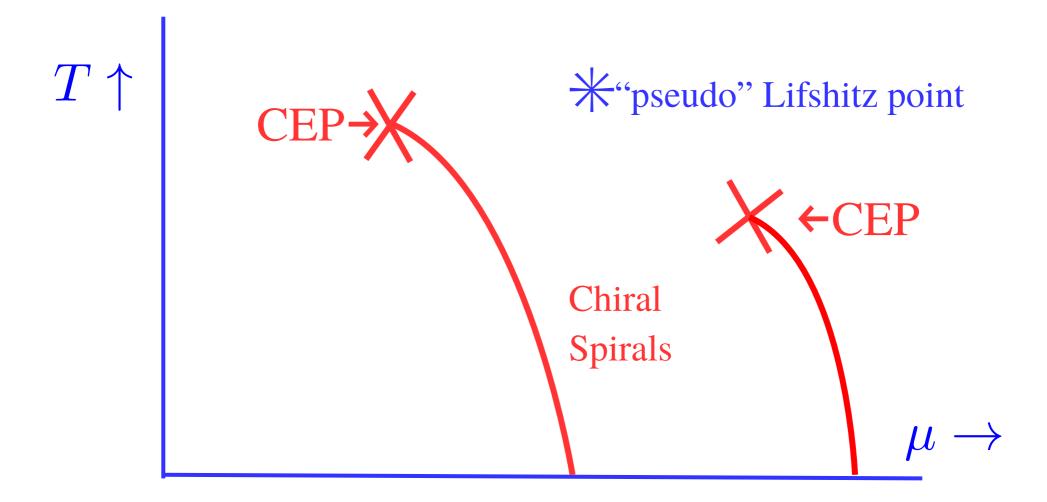
Ising fixed point, dominated by massless fluctuations at CEP



Phase Diagram with Chiral Spirals

Now *three* phases. If model "C", *two* 1st order lines and *two* CEP's "Pseudo" Lifshitz point with large fluc.'s.

In CS, large fluc.'s at *non*zero momenta, $\sim k_0$.



Beam Energy Scan and cumulants

- To look for Critical End Point, typically compute cumulants
- Expectation from theory, to right: corrections to c_3 are *positive*
- But STAR finds that the corrections to c_3 , below, are *negative*

30 40

Colliding Energy $\sqrt{s_{NN}}$ (GeV)

20

1.05

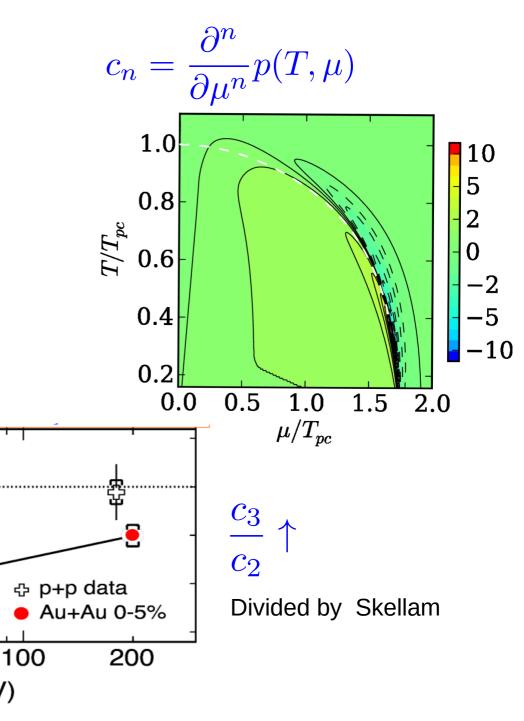
1.00

0.95

0.90

0.85

567810

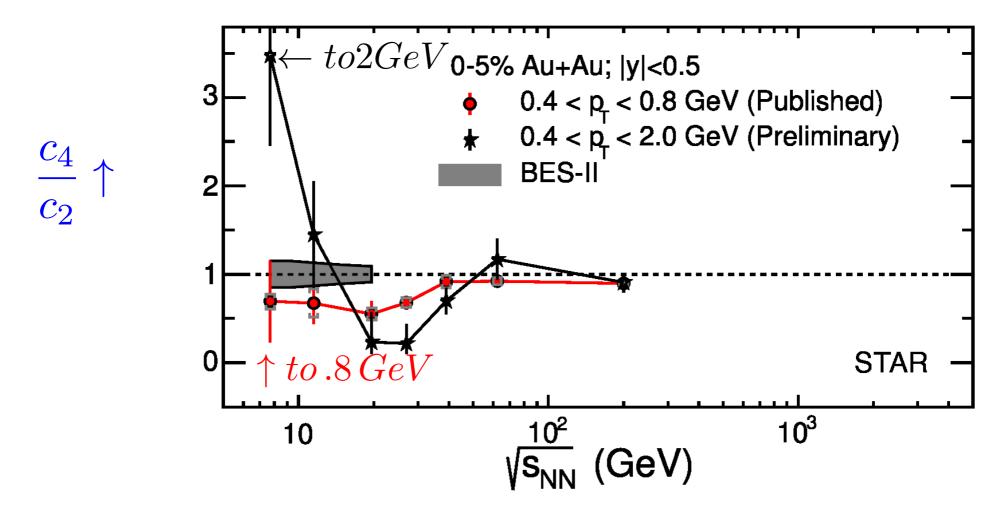


Fluctuations at 7 GeV

Beam Energy Scan, down to 7 GeV.

Fluctuations *MUCH* larger when up to 2 GeV than to 0.8 GeV

Trivial multiplicity scaling? ... or first evidence for a Chiral Spiral?!



STAR: fig. 14,https://drupal.star.bnl.gov/STAR/files/STAR_iTPC_proposal_06_09_2015.pdf

Suggestion for experiment

- For any sort of periodic structure (1D, 2D, 3D...),
- fluctuations concentrated about some characteristic momentum k₀
- So "slice and dice": bin in intervals, 0 to .5 GeV, .5 to 1., etc.
- If peak in fluctuations in a bin not including zero, may be evidence for $k_0 \neq 0$.
- If periodic structure, fluctuations must go up as \sqrt{s} goes *down*, since μ increases

NJL models and Lifshitz points

Consider Nambu-Jona-Lasino models.

Nickel, 0902,1778 & 0906.5295 + + Buballa & Carignano 1406.1367

$$\mathcal{L}_{\rm NJL} = \overline{\psi}(\partial \!\!\!/ + g\sigma)\psi + \sigma^2$$

Integrating over ψ ,

$$\log(\partial + g\sigma) \sim \ldots + \kappa_1 ((\partial \sigma)^2 + \sigma^4) + \kappa_2 ((\partial^2 \sigma)^2 + \sigma^2 (\partial \sigma)^2 + \sigma^6) + \ldots$$

Consequently, in NJL @ 1-loop, *tricritical = Lifshitz point*.

Above due to scaling $\partial \to \xi \partial$, $\sigma \to \xi \sigma$. Special to including only σ at one loop.

Not generic: violated by the inclusion of more fields, to two loop order, etc.