VOLUME DEPENDENCE OF BARYON NUMBER CUMULANTS & THEIR RATIOS

Vladimir Skokov (RBRC BNL)

in collaboration with Gabor Almasi and Rob Pisarski

August 10, 2017

- Introduction: volume fluctuations
- Functional renormalization group approach & new numerical method
- Chiral model & finite volume
- Phase diagram and cumlants in finite volume
- Conclusions

SIGNATURES OF PHASE TRANSITION AND CRITICAL POINT

- O(4) crossover: universal sign structure of higher order cumulants, χ₆
- Divergent cumulants of baryon number fluctuations at CP

$$\chi_n \propto \xi^{3\left(\frac{n\beta\gamma}{2-\alpha}-1\right)}$$

- In vicinity of CP: universal sign structure of cumulants
- Divergent baryon number susceptibility at off-equilibrium first order phase transition

B. Friman, F. Karsch, K. Redlich, V. S. 2011 M. Stephanov 2011 C. Sasaki, K. Redlich, B. Friman 2007

Fluctuations as probe of phase diagram

Previous slide: listed predictions for infinite static medium In Heavy Ion Collisions:

- Finite lifetime
- Finite size and anisotropy
- Conservation laws
- Fluctuations not related to critical, e.g. V-fluctuations
 - V.S., B. Friman, K. Redlich 2012

A. Bzdak, V. Koch, V.S. 2011

this talk

S. Mukherjee, R. Venugopalan, Y. Yin 2015/2016

Stopping

S. Mukherjee, R. Venugopalan, Y. Yin 2015

VSkokov@bnl.gov

VOLUME FLUCTUATIONS: INTRODUCTION

- Usually it is assumed that cumulants are independent of volume
- Even in this case, volume fluctuations give non-trivial contribution to observable cumulants

$$c_{1} = \kappa_{1}, \qquad c_{2} = \kappa_{2} + \kappa_{1}^{2} \nu_{2},$$

$$c_{3} = \kappa_{3} + 3\kappa_{2}\kappa_{1}\nu_{2} + \kappa_{1}^{3}\nu_{3}, \quad c_{4} = \kappa_{4} + (4\kappa_{3}\kappa_{1} + 3\kappa_{2}^{2})\nu_{2} + 6\kappa_{2}\kappa_{1}^{2}\nu_{3} + \kappa_{1}^{4}\nu_{4}$$

$$c_{6} = \kappa_{6} + \kappa_{1}(60\kappa_{2}\kappa_{3}\nu_{3} + 6\kappa_{5}\nu_{2}) + \kappa_{1}^{2}(45\kappa_{2}^{2}\nu_{4} + 15\kappa_{4}\nu_{3}) + 15\kappa_{2}\kappa_{4}\nu_{2} + 10\kappa_{3}^{2}\nu_{2} + 20\kappa_{3}\kappa_{1}^{3}\nu_{4} + 15\kappa_{2}^{2}\nu_{3} + 15\kappa_{2}\kappa_{1}^{4}\nu_{5} + \kappa_{1}^{6}\nu_{6}$$
where $\kappa_{n} = T^{3}\chi_{n}$ and ν_{n} are reduced volume cumulants, e. g.

$$\nu_{2} = (\langle V^{2} \rangle - \langle V \rangle^{2})/\langle V \rangle.$$

V.S., B. Friman and K. Redlich, 1205.4756

- Measured cumulants: c_n
- Equilibrium theory: κ_n

$$c_1 = \kappa_1, \qquad c_2 = \kappa_2 + \kappa_1^2 \nu_2, c_3 = \kappa_3 + 3\kappa_2 \kappa_1 \nu_2 + \kappa_1^3 \nu_3, \qquad c_4 = \kappa_4 + (4\kappa_3 \kappa_1 + 3\kappa_2^2)\nu_2 + 6\kappa_2 \kappa_1^2 \nu_3 + \kappa_1^4 \nu_4$$

 $c_{6} = \kappa_{6} + \kappa_{1} \left(60\kappa_{2}\kappa_{3}\nu_{3} + 6\kappa_{5}\nu_{2} \right) + \kappa_{1}^{2} \left(45\kappa_{2}^{2}\nu_{4} + 15\kappa_{4}\nu_{3} \right) + 15\kappa_{2}\kappa_{4}\nu_{2} + 10\kappa_{3}^{2}\nu_{2} + 20\kappa_{3}\kappa_{1}^{3}\nu_{4} + 15\kappa_{2}^{3}\kappa_{1}^{3}\nu_{5} + \kappa_{1}^{6}\nu_{6} + \kappa_{1}^{6}\kappa_{1}^{2}\kappa_{1}^{2}\kappa_{1}^{2} + \kappa_{1}^{6}\kappa_{1}^{2}\kappa_{1}^{2} + \kappa_{1}^{6}\kappa_{1}^{2} + \kappa_{$

• $v_2 \ge 0 \rightsquigarrow c_2 \ge \kappa_2$

• c_3 receives contribution from v_3 . For very central events (defined by N_{ch}) v_3 is negative because volume (or S_{\perp}) has an upper bound V_{max} , while systems with lower volume may produce large N_{ch} owing to fluctuations.

 $c_3 < \kappa_3 \text{ if } \nu_3 < -3\nu_2\kappa_2/\kappa_1^2$ Large μ ?!

- At nonzero μ , c_4 : competing contributions with opposite signs
- At zero μ only c_n with $n \ge 4$ are modified, i.e. $c_4 = \kappa_4 + 3\kappa_2^2 \nu_2$. Thus $c_4 \ge \kappa_4$. Competing contributions to $c_6 = \kappa_6 + 15\kappa_2\kappa_4\nu_2 + 15\nu_3\kappa_2^3$

Volume fluctuations: illustrations for v_2

- N_{part} as proxy for V
- Glauber + Negative binomial; Au-Au $\sqrt{s} = 200$

- Suppression of fluctuations at very large and very small (not shown) *N_{ch}*
- Centrality binning increases volume fluctuations and introduces non-monotonicity

V.S., B. Friman and K. Redlich, 1205.4756

P. Braun-Munzinger, A. Rustamov, J. Stachel, 1612.00702

Points: centrality classes from right to left 0-5%, 5-10%, 10-20%, 20-30%, ...

Points: centrality classes from right to left 0-5%, 5-10%, 10-20%, 20-30%, ...

- Changes sign
- Centrality binning effect is strong

Points: centrality classes from right to left 0-5%, 5-10%, 10-20%, 20-30%, ...

Volume fluctuations: are χ_n volume independent?

- Key assumption: cumulants are volume independent
- Generally this is true if surface effects can be neglected
- This is violated by long-range interactions
- Volume dependence of chiral condensate at T = 0, physical pion mass

Main ingredients:

- Functional Renormalization Group + Quark-meson model
- Equilibrium calculations in box *L*³ for physical pion mass

• Expectation: susceptibilities are more sensitive to system size

Quark Meson model

(talk by Jochen Wambach)

$$\mathcal{L} = \bar{\psi} \left[i \gamma^{\mu} \partial_{\mu} - g(\sigma + i \gamma_5 \tau \cdot \pi) \right] \psi + \frac{1}{2} (\partial_{\mu} \sigma)^2 + \frac{1}{2} (\partial_{\mu} \pi)^2 - U(\sigma, \pi)$$

• Mean-field approximation: integrate out fermion fields & disregard fluctuations of mesonic field, $\Omega = \Omega_q - U(\sigma, \pi)$

$$\Omega_q = -\frac{1}{V} \operatorname{Tr} \log \left(i \gamma^{\mu} D_{\mu} - g \sigma \right)$$

• Beyond mean-field approximation: Functional Renormalization Group

V. S. and B. Friman et al, 1005.3166; R. Pisarski and V. S., 1604.00022

FUNCTIONAL RENORMALIZATION GROUP

General flow equation for scale-dependent effective action Γ_k . Γ_k : loosely speaking modes with momenta greater than *k* are integrated out, *k* is IR cut-off.

$$\partial_k \Gamma_k[\Phi,\psi] = \frac{1}{2} \operatorname{Tr} \left\{ \partial_k R_{kB} \left(\Gamma_k^{(2,0)}[\Phi,\psi] + R_{kB} \right)^{-1} \right\} - \operatorname{Tr} \left\{ \partial_k R_{kF} \left(\Gamma_k^{(0,2)}[\Phi,\psi] + R_{kF} \right)^{-1} \right\}$$

Flow equation for QM model in infinite volume (local potential approximation & sharp regulator)

$$\begin{split} \partial_k \Omega(k,\rho &\equiv \frac{1}{2} [\sigma^2 + \pi^2]) = \frac{k^4}{12\pi^2} \left\{ \frac{3}{E_\pi} \left[1 + 2n_B(E_\pi;T) \right] + \frac{1}{E_\sigma} \left[1 + 2n_B(E_\sigma;T) \right] - \frac{4N_f N_c}{E_q} \left[1 - n_F(T,\mu_q) - \bar{n}_F(T,\mu_q) \right] \right\} \end{split}$$

 $n_B(E;T)$ is boson distribution functions

 $N(T, \mu_q)$ are fermion distribution function modified owing to coupling to gluons E_{σ} and E_{π} are functions of k, $\partial\Omega/\partial\rho$ and $\rho\partial^2\Omega/\partial\rho^2$ $E_q = \sqrt{k^2 + 2g^2\rho}$

FRG defines $\Omega(k, \rho; T, \mu_Q, \mu_B)$

Physically relevant quantity is thermodynamic potential $\overline{\Omega}(T, \mu_0, \mu_B) \equiv \Omega(k \to 0, \rho \to \rho_0; T, \mu_0, \mu_B)$, where ρ_0 is minimum of Ω V.S. et al 1004.2665

• Soft mesonic excitations drive evolution at very small k

General flow equation for effective action

$$\partial_k \Gamma_k[\Phi, \psi] = \frac{1}{2} \operatorname{Tr} \left\{ \partial_k R_{kB} \left(\Gamma_k^{(2,0)}[\Phi, \psi] + R_{kB} \right)^{-1} \right\} - \frac{\operatorname{Tr} \left\{ \partial_k R_{kF} \left(\Gamma_k^{(0,2)}[\Phi, \psi] + R_{kF} \right)^{-1} \right\}}{\operatorname{fermions}}$$

- Flow equation involve summation over modes \sum_{n_1,n_2,n_3} . For box with dimensions $L_1 \times L_2 \times L_3$ and periodic boundary conditions $q^2 = \sum_{i=1}^3 \left(\frac{2\pi n_i}{L_i}\right)^2$
- In local potential approximation $[E_x = \sqrt{m_x^2 + q^2 + R_k(q)}, \text{ e.g. } m_\sigma^2 = \partial^2 \Omega / \partial \sigma^2]$

• Commonly applied sharp cut-off function $R_k^{\text{sharp}}(q) = (k^2 - q^2)\theta(k^2 - q^2) \times$ This is illustrated best with Wegner-Houghton functional RG.

WEGNER-HOUGHTON EQUATION

• Kadanoff-Wilson blocking in Fourier space for partition function

$$Z_{k} = \int \mathcal{D}\phi \exp\left(-S_{k}[\phi]\right) = \underbrace{\int \mathcal{D}\phi_{<}}_{|p| \leq k - \delta k} \underbrace{\int \mathcal{D}\phi_{>}}_{k - \delta k < |p| \leq k} \exp\left(-S_{k}[\phi_{<} + \phi_{>}]\right) = \underbrace{\int \mathcal{D}\phi_{<}}_{|p| \leq k - \delta k} \exp\left(-S_{k - \delta k}[\phi_{<}]\right)$$

• Eliminating δk modes using saddle point approximation $\delta S_k [\phi_{<} + \phi_{>}^0] / \delta \phi_{<} = 0$ (shell by shell momentum integration)

$$\exp\left(-S_{k-\delta k}[\phi_{<}]\right) = \int_{k-\delta k < |p| \le k} \mathcal{D}\phi_{>} \exp\left(-S_{k}[\phi_{<} + \phi_{>}]\right)$$

$$\stackrel{\delta k/k \ll 1}{\approx} \exp\left(-S_{k}[\phi_{<} + \phi_{>}^{0}]\right) \int \mathcal{D}\phi_{>} \exp\left(-\frac{1}{2} \int d^{d}k \frac{\delta^{2}}{\delta \phi_{<} \delta \phi_{<}} S_{k}[\phi_{<} + \phi_{>}^{0}](\phi_{>} - \phi_{>}^{0})^{2}\right)$$

or

$$S_{k-\delta k}[\phi_{<}] = S_{k}[\phi_{<} + \phi_{>}^{0}] + \frac{1}{2} \operatorname{Tr} \ln \left(\frac{\delta^{2}}{\delta \phi_{<} \delta \phi_{<}} S_{k}[\phi_{<} + \phi_{>}^{0}] \right)$$

• For trivial saddle, taking $\delta k \to 0$, one recovers usual FRG equation with sharp cut-off function (modulo surface term) Key point: $\delta k \to 0$ must exist]. $\delta k \to 0$ must exist].

Wegner-Houghton equation

FRG in finite volume: smooth cut-off regulator

- We have to use smooth regulator $R_k(q) = \frac{q^2}{\exp(q^2/k^2) 1}$
- \bullet ...and thus deal with summation over modes on each step of FRG evolution and for each value of σ

reminder Ω is function of two variables: k and σ

- Need for efficient algorithm to solve stiff partial differential equation which involves mode summation
 - Optimizing mode summation: One-particle energies depend on magnitude q^2 . This symmetry can be taken into account by introducing multiplicity of states with given magnitude G(m)

$$\sum_{\mathbf{n}} f(\mathbf{n}^2) = \sum_{m=0}^{\infty} \left(\sum_{\mathbf{n}} \delta_{m,\mathbf{n}^2} \right) f(m) = \sum_{m=0}^{\infty} G(m) f(m)$$

 Usually applied Taylor and grid methods for solving FRG cannot reliably applied for first-order PT or slow/unstable at k → 0.
 Instead we developed pseudo-spectral Chebyshev collocation algorithm for FRG. G. Almasi, R. Pisarski and V. Skokov, Phys. Rev. D 95, 056015 (2017): arXiv:1612.04416

CHEBYSHEV COLLOCATION: DEMONSTRATION

R. Tripolt, N. Strodthoff, L. Smekal, J. Wambach, 1311.0630

Talk by Jochen Wambach

• First-order phase transition line must be perpendicular to μ axis due to Clausis-Clapeyron relation $d\mu/dT|_{\text{along 1st order tran.}} = -\Delta s/\Delta n$. At zero T, $\Delta s = 0$.

Gabor Almasi, V. S., 2016

Algorithm allows to resolve this old puzzle

 $\chi_n(V)$

VSkokov@bnl.gov

LITIM (SHARP) REGULATOR VS EXPONENTIAL

• Litim regulator \rightarrow non-analyticity in evolution

• Most importantly: artifacts in order parameter dependence on system size

Absence of spontaneous χSB in finite volume

• Cf. mean-field approximation resulting in non-zero expectation value in finite volume

• Fluctuations are important!

VSkokov@bnl.gov	$\chi_n(V)$	CPOD '17 1	19/24

Location of apparent critical point

- There is true critical point for $V \to \infty$. In finite volume, CP \rightsquigarrow apparent CP.
- There is some degree of arbitrariness in defining ACP.
- In this work: maximum of chiral susceptibility.

VSkokov@bnl.gov	$\chi_n(V)$	CF
-----------------	-------------	----

 $\chi_n = \partial^n (p/T^4) / (\partial \mu/T)^n$

• Anisotropy coefficient $A = L_{\parallel}/L_{\perp}$

Results: QM + FRG in finite model $\mu \neq 0$

• Anisotropy coefficient $A = L_{\parallel}/L_{\perp}$

Results: QM + FRG in finite model $\mu \neq 0$

• Anisotropy coefficient $A = L_{\parallel}/L_{\perp}$

• Approximation of volume independence of χ_n breaks down at about L = 3 - 4 fm: this makes analysis of volume fluctuations significantly more complicated and tractable only in fully dynamical model.

- Volume fluctuations: some properties are model independent, i.e. negative v_3
- In general, v_n are non-monotonic functions of centrality and energy
- Chebyshev collocation is powerful and fast method for solving FRG Future applications include inhomogeneous phases, talk by Pisarski
- Drastic shift of apparent CP as function of system size
- Ratios of cumulants depend on volume for $L \sim 3$ fm