Phenomenological QCD equations of state for neutron star structure & mergers

- TK, P.D. Powell, Y. Song, G. Baym
 - 1412.1108 [hep-ph], PRD91, 045043 (2015)
- TK, 1508.1108 [hep-ph], review in EPJA
- K. Fukushima & TK, 1509.1108, APJ817(2016)2
- TK, 1610.05486 [hep-ph], PLB769 (2017) 14
- Baym-Hatsuda-TK-Powell-Song-Takatsuka, (review) 1707.04966 [astro-ph]

2/22 [Fukushima-Hatsuda, review 2010] RHIC, LHC Lattice

2/22 [Fukushima-Hatsuda, review 2010]

Strategy

Part I: NS structure, EoS at T=0

Part II: Perturbing T=0 EoS by (T, Y_e) (lepton fraction)

GR simulations

predictions

Gravitational waves & EW bursts

4/22

M-R relation & EoS

M-R relation & EoS

M-R relation & EoS

4/22

Ozel et al. (2010), Steiner et al (2015) : X-ray analyses

Causality constraint on 2n₀-5n₀ region

5/22

For softer - stiffer EoS \implies less freedom for $2n_0$ - $5n_0$ region

If we put 1st order H-Q transitions...

[more systematic analyses -> Han-Alford-Prakash 13]

If R is small (<~13km) disfavors strong 1st order P.T.

Ozel et al. (2010), Steiner et al (2015); target of NICER and GW detection

hadron-quark continuity ??

[Schaefer-Wilczek 98, Hatsuda et al. 07]

7/22 3-window modeling (Masuda-Hatsuda-Takatsuka 12) few meson many-meson exchange Baryons overlap exchange (mobility --cf: Karsch-Satz '80) Quark Fermi sea structural change of hadrons nucleons only p_F ~ 400 MeV (pQCD) (3-body) n_B ~ 100n_o 5n₀ ~ 2'n

7/22 3-window modeling (Masuda-Hatsuda-Takatsuka 12) few meson many-meson exchange Baryons overlap exchange (mobility --cf: Karsch-Satz '80) Quark Fermi sea nucleons only structural change of hadrons p_F ~ 400 MeV (pQCD) (3-body) n_R **Quark models Interpolated EoS** APR ~ 100n_o **5**n₀ ~ 2'n

3-flavor quark MF model : template Effective Hamiltonian (inspired by hadron & nuclear physics): $\mathcal{H}_{eff} \sim \bar{\psi} \left[-i\vec{\alpha} \cdot \vec{\partial} + m \right] \psi + \mathcal{H}_{NJL}^{4\text{Fermi+KMT}}$ \rightarrow structural change of *Dirac sea* & *quark bases* + $\mathcal{H}^{3q \rightarrow B}$ will be *ignored* in the *percolated* domain

+
$$\mathcal{H}_{OGE}$$
 $\stackrel{\text{mag. part}}{\longrightarrow}$ - $H \sum_{A,A'=2,5,7} (\bar{\psi}i\gamma_5\lambda_A\tau_{A'}\psi_c)^2$
+ \mathcal{H}_{nucl} $\stackrel{\text{mag. part}}{\longrightarrow}$ + $g_V(\bar{\psi}\gamma_0\psi)^2$ $\sim \omega$ -exchange
(repulsive)

+ constraints (charge neutrality, β- equilibrium, color-neutrality)

Goal: NS constraints $\rightarrow (G_s, H, g_V)_{@5-10n0}$

Standard + vector coupling

→ *stiffen* EoS & *delay* the chiral restoration

Standard + vector coupling

→ *stiffen* EoS & *delay* the chiral restoration

+ color magnetic interaction

(in MF, effects appear as diquark condensate)

 \rightarrow overall shift of P(μ) toward lower μ

+ APR constraint at low density

(mimic confining effects)

→ discard artificial excess of P at n_B < ~5n₀ (like Polyakov loop effects in hot QCD)

M-R curves

13/22

Perturbing T=0 quark EoS by (T, Y_e) (for supernovae & NS-NS mergers)

[TK, in progress]

14/22 GW from NS-NS mergers (0.1-10 (?) events / year)

Hyper massive NS (HMNS)

 \rightarrow stars of 2-3M_{sun} can survive for ~10ms

Which density region is hot?

Hot EoS for post mergers

Almost all GR simulations use hot nuclear EoS

[Shen-EoS (Shen et al.), SLy EoS (Lattimer-Swetsy), ...]

- Hot quark matter EoS (for n_B > 5n₀)
 - *Normal* quark matter

•

- *pQCD EoS* (gapless quarks & gapped gluons) [Kurkela-Vuorinen '16]
- **3-window EoS** (gapless quarks) [Masuda-Hatsuda-Takatsuka '15]

gapless quarks $\rightarrow \Delta P(T) \sim p_F^2 T^2 (>> T^4)$

This work \rightarrow *Gapped* quark matter, *Color-Flavor-Locked* (CFL)

For
$$T < \Delta$$
; $\Delta P(T) \sim T^4 + ...$

neutrinos, photons, NG modes

17/22 **NG mode contributions** (CFL color-super phase)

[Son-Stephanov 2000, Bedaque-Schafer 2002, ...]

setup consistent with T=0 NS descriptions

- explicit sym. breaking, mass & U_A(1)
- neutrality conditions
- coexistence of chiral and diquark condensates
- keep "pa", "pp", "aa" contributions to be consistent with gap eq.

most NG modes > 50 MeV; light K; more massive at stronger coupling

Thermodynamics (beyond low T regime)

NG bosons (bound states) pre-formed pairs (p-a, p-p, a-a pairs) decaying pairs (continuum) k very important to keep (see below)

The phase shift rep. of thermodynamic-potential :

[Beth-Uhlenbeck1939, Dashen-Ma-Bernstein 1969]

$$\Omega_X(T,\mu) = \int \frac{\mathrm{d}\vec{q}}{(2\pi)^3} \int \frac{\mathrm{d}\omega}{2\pi} \left[\omega + T \ln\left(1 - \mathrm{e}^{-\frac{\omega-\mu_X}{T}}\right) + T \ln\left(1 - \mathrm{e}^{-\frac{\omega+\mu_X}{T}}\right) \right] \frac{\partial \delta_X(\omega,\vec{q})}{\partial \omega}$$

$$\mathcal{G}/\mathcal{G}_0 = |\mathcal{G}/\mathcal{G}_0| e^{i\delta(\omega,\vec{q})}$$

full/free Green's function phase shift

Constraint: Levinson's theorem $\mathcal{G}/\mathcal{G}_0 = |\mathcal{G}/\mathcal{G}_0| e^{i\delta(\omega,\vec{q})}$

19/22

Meaning: Total num. of states does not change by interactions

$$0 = \int_{0}^{\infty} dE \operatorname{Tr} \left[\operatorname{Im} \mathcal{G} - \operatorname{Im} \mathcal{G}_{0} \right]$$

=
$$\int_{0}^{\infty} dE \partial_{E} \operatorname{Tr} \left[\operatorname{Im} \ln \mathcal{G}^{-1} / \mathcal{G}_{0}^{-1} \right]$$

=
$$-\operatorname{Tr} \left[\delta(\infty) - \delta(0) \right]$$

invariant
$$\pi \cdot \underbrace{\int_{bound threshold for decay}^{\delta} \delta$$

Phase shifts & Levinson's theorem

20/22

$$\Omega_{X}(T,\mu) = \int \frac{\mathrm{d}\vec{q}}{(2\pi)^{3}} \int \frac{\mathrm{d}\omega}{2\pi} \left[\omega + T \ln\left(1 - \mathrm{e}^{-\frac{\omega-\mu_{X}}{T}}\right) + T \ln\left(1 - \mathrm{e}^{-\frac{\omega+\mu_{X}}{T}}\right) \right] \left(\frac{\partial \delta_{X}(\omega,\vec{q})}{\partial \omega} \right)$$

$$\pi \int_{\substack{\text{Levinson's theorem } \\ \text{theorem } \\ \frac{\mathrm{d}/\mathrm{d}\omega}{\mathrm{threshold for decay}}} \int \frac{\mathrm{d}/\mathrm{d}\omega}{\mathrm{d}\omega} \int_{\substack{\text{regative } \\ \text{regative } \\ \frac{\mathrm{d}/\mathrm{d}\omega}{\mathrm{d}\omega}}} \int_{\substack{\text{regative } \\ \frac{\mathrm{d}/\mathrm{d}\omega}{\mathrm{d}\omega$$

Pressure from low E and high E cancel one another; taming a meson (diquark) gas at high T

Phase shift $\delta(k_0, k) : e.g. \pi$ -channel

21/22

particle-hole, particle-antiparticle

particle-particle, hole-hole

Summary

- Soft EoS at small n_B & stiff EoS at large n_B
 - → crossover or weak 1st order from H to Q

• [G_s, G_v, H] @ 5n₀ ~ G_s^{vac}

→ gluons likely remain non-perturbative to $n_B \sim 5-10 n_0$ (*Quarkyonic*)

Quark matter EoS (MF + RPA correlation) for

 $n_B = 5-10 n_0 \& T = 10-100 MeV \& Y_e = 0-0.5$ (still under construction...)

Collective modes in the CFL

Symmetry breaking (in chiral limit):

 $U(1)_B \times U(1)_Q \times SU(3)_L \times SU(3)_R \times SU(3)_c \rightarrow SU(3)_{C+L+R} \times U(1)_{Q'}$

(1+1+8+8+8) - (8+1) = 8 + (8 + 1)

Generators before and after the SSB

part of massive gluons

NG bosons

- +1 NG boson: effective $U(1)_A \rightarrow light \eta'$
- In reality: *explicit* flavor sym. breaking in NSs mass, electric charges → 9 bosons are pseudo-NG modes
- Effective chemical potentials appear for flavored NG modes
 [high density EFT: Bedaque-Schafer 2002]

→ small effects on π^{\pm} , but significant effects on kaons (possibility of kaon condensations in the CFL)

NG modes in NSs

- Most of the previous studies [Son-Stephanov2000, Bedaque-Schafer 2002, …]
 → for high density and/or weak coupling limit
 (qq)(qq) fluctuations with mass ~ O(mq)
- In NSs, the situation is not so clean...
 - matter is not weak coupling, and $p_F \sim 400-500 \text{ MeV}$
 - Chiral condensates likely remain $(q\bar{q})$ fluctuations with mass $\sim O(m_q^{1/2})$
 - UA(1) breaking likely remains
- mixing with 2q-4q fluct. in *3-flavor limit* [Yamamoto et al. 2007]
- few model studies (but at that time NSs constraints are not available)
 [Basler-Buballa '10, ...]

Discussion : Bag constant ?

23/25

 $P_{NJL} @ 5 n_0 \rightarrow only 200 - 400 \text{ MeV fm}^{-3}$

Together with $G_V \sim H \sim G_s^{vac}$, we claim :

Gluons should remain non-perturbative to $n_B \sim 5-10 n_0$

Discussion : Bag constant ?

Def:
$$\mathcal{B} \equiv \epsilon_{pert}^{vac} - \epsilon_{full}^{vac} \sim \Lambda_{\rm QCD}^4 > 0$$

Energy gain by non-pert. effects ;

e.g.) ChSB in Dirac sea, gluon condensation, ...

 $\begin{array}{ll} \textit{If } \mu \textit{ is large enough :} & (\text{ softening }) \\ \hline \\ \text{-Loss of non-pert. effects} \rightarrow & \left\{ \begin{array}{c} \epsilon_{\text{matter}} \rightarrow & \epsilon_{\text{matter}} + \mathcal{B} \\ P_{\text{matter}} \rightarrow & P_{\text{matter}} - \mathcal{B} \end{array} \right. \end{array}$

NJL takes into account the vac. contributions only partially;

it *misses* contributions from *gluonic* one, B_q

A question : Conf. vs Higgs ?

22/25

Discussion 2: value of G_V ?

APR constrained NJL with running $G_V(n_B)$ [Fukushima-TK '15]

would offer more concrete modeling for "unified" EoS than 3-window descriptions

23/25 **Discussion 3: Hyperon problems ?**

How did we avoid hyperon softening ?

•
$$\mu_B^{th}$$
 for strangeness :
 $\mu_B \sim 3M_s \sim 1.5 \text{ GeV}$ (quark picture)
 $\mu_B \sim \mu_A, \mu_{\Sigma} \sim 1.1-1.2 \text{ GeV}$ (hadron picture)
(uds, uus,...)

• A quark w.f. for a baryon (e.g. Isgur-Kahl)

24/25 **Discussion 3: Hyperon problems ?**

• Quark descriptions of hadronic matter :

How to put hyperons ??

- $M_{\Lambda,\Sigma}$ at *low P* is *rejected* by quark Pauli blocking on (u,d)
- $M_{\Lambda,\Sigma}$ at high P avoid the blocking, but is energetic

[Note: this argument becomes *more powerful* at *higher n_B*]

"Pairing" can stiffen EoS

 \rightarrow Softening at low n_B & stiffening at high n_B

Ρ v.s. μ

n_B/n_0 v.s. μ

How stiff EoS looks like in $P(\mu)$ curves

How stiff EoS looks like in P(μ) curves

How stiff EoS looks like in P(μ) curves

Example of stiffening 1

Example of stiffening 2

Nuclear EoS : convergence ?

Many-body interaction (APR-A18+UIX case)

	2 –body int.		<mark>3</mark> –body int.		<mark>4</mark> –body int.
n _B	$\langle v_{ij}^{\pi} \rangle$	$\langle v_{ij}^R \rangle$	$\langle V_{ijk}^{2\pi} \rangle$	$\langle V^R_{ijk} \rangle$	(our guess)
n _o	-4.1	-29.9	1.2	4.5	small
2 n ₀	-25.1	-36.4	-17.4	30.6	marginal
<mark>3</mark> n ₀	- 35.7	-44.7	- 34.1	78.0	large
4 n ₀	- 52.2	-41.1	- 76.9	160.3	
	grow rapidly !!				

$$< V_{N-body} > \sim c_N (n_B/n_0)^N$$

Observational constraints on P(µ)

4/34

Theoretical guides at N_c=3

• 3-loop *pQCD* at large μ_q

[Freedman-McLerran 78; Baluni 78 Kurkela-Romatschke-Vuorinen 09, ...]

• large α_s corrections at $\mu_q < 1$ GeV

 \rightarrow soft gluons important at n_B < 100 n₀

- Nuclear calculations (ChEFT+many-body) at small μ_q
 - reliable at n_B ~ n₀
 [Akmal et al. (APR) 98; Gandolfi et al. 12, ...]

• convergence problems : $< V_{2-body} > \sim < V_{3-body} > \sim ...$

At n_B > 2n₀ - hyperon softening, unless introducing ad hoc repulsion

• changes in hadron w.f. & Dirac sea negligible?

GW159014 : the discovery of GWs

Frequency spectrum

13/34

GR simulations, Hotokezaka et al. 2016

If we put 1st order H-Q transitions...

[more systematic analyses -> Han-Alford-Prakash 13]

If R is small (<~13km) is disfavors strong 1st order P.T.

Ozel et al. (2010), Steiner et al (2015); target of NICER and GW detection

hadron-quark continuity ??

[Schaefer-Wilczek 98, Hatsuda et al. 07]