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Chiral Magnetic Effect
(Fukushima-Kharzeev-Warringa, Son-Zhitnitsky, Vilenkin)

~JV =
eNc

2π2 µA
~B , ~JA =

eNc

2π2 µV
~B

Note the < AVV > structure
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Discrete Symmetries

P = −1

C = +1
~J = σχ~B is a P- and CP-odd phenomenon
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Axial Charge is P- and CP-odd

Axial Charge

J0
A = N(qL) + N(q̄L)− N(qR)− N(q̄R)
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Possible experimental consequence of
chiral magnetic effect
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Experiments at RHIC
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Experiments at LHC
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Cutting-Edge Simulations of Hydrodynamics
with Chiral Magnetic Effect

Yin Jiang, Shuzhe Shi, Yi Yin, Jinfeng Liao
(arXiv:1611.04586 [nucl-th])
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In the chiral basis JR,L = 1
2(JV ± JA)

Chiral Magnetic Effect
(Fukushima-Kharzeev-Warringa, Son-Zhitnitsky, Vilenkin)

~JR,L = ± 1
4π2µR,L

~B

Chiral Vortical Effect
(Erdmenger.et al, Banerjee.et al, Vilenkin)

~JR,L = ± 1
4π2

(
µ2

R,L + π2

3 T 2
)
~ω , ~ω = 1

2
~∇× ~v
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They are robust and protected by Chiral Anomaly

They have been checked
at strong coupling
(HUY, Rebhan-Schmitt-Stricker, Gynther.et al)

in hydrodynamics (Son-Surowka)

on lattices
(Buividovich.et al, Abramczyk.et al, Yamamoto, Bali.et al)
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We will see that the weak coupling picture is
a bit more subtle
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Quasi-particle picture of CME (Kharzeev-Warringa)

Quantized Weyl particles (p) and anti-particles (p̄)

~S = ±1
2
~p
|~p| , ~µM = ± ~S

|~p| = 1
2
~p
|~p|2
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Quasi-particle picture of CME (Kharzeev-Warringa)

Energy shift in a magnetic field: ∆E = −~µM · ~B = −1
2
~p·~B
|~p|2

It gives rise to a tendency to align the momentum
along the magnetic field direction
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Let’s try to be more quantitative

The energy shift ∆E = −1
2
~p·~B
|~p|2 will modify the

equilibrium distribution of particles (f eq
+ ) and

anti-particles (f eq
− )

from

f (0)± ≡
(
exp[β(|~p| ∓ µ)] + 1

)−1

to

f eq
± =

(
exp[β(|~p| − 1

2
~p · ~B
|~p|2

∓ µ)] + 1

)−1

≈ f (0)± + βf (0)± (1− f (0)± )
~p · ~B
2|~p|2

+O(B2)
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The net current is

~J =

∫
d3~p

(2π)3
~̇x (f eq

+ − f eq
− ) =

∫
d3~p

(2π)3

~p
|~p|

(f eq
+ − f eq

− )

=
β

2

∫
d3~p

(2π)3

~p
|~p|

~p · ~B
|~p|2

(
f (0)+ (1− f (0)+ )− f (0)− (1− f (0)− )

)
=

1
3
· 1

4π2
~B × β

∫ ∞
0

dp p
(

f (0)+ (1− f (0)+ )− f (0)− (1− f (0)− )
)

=
1
3
· µ

4π2
~B

where

β
∫∞

0 dp p
(

f (0)+ (1− f (0)+ )− f (0)− (1− f (0)− )
)

= µ

independent of temperature
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This contribution from the energy shift explains only
1
3 of the full result

Identifying the remaining 2
3 contribution to the CME

needs a complete picture of microscopic motions of
fermions under a magnetic field
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Berry Phase in Momentum Space
(Son-Yamamoto, Stephanov-Yin, Qun Wang et al)

(QFT worldline approach Mueller-Venugopalan)

The motion of Weyl particle is described by the action

S+ =

∫
dt
(
~p · ~̇x + ~A · ~̇x + A0 − E − ~Ap · ~̇p

)
where the last term is the Berry’s connection coming

from the chiral spinor wave-function

~Ap = iψ†(~p)~∇pψ(~p) , (~σ · ~p)ψ(~p) = |~p|ψ(~p)

whose curvature is of the monopole form

~b ≡ ~∇× ~Ap =
~p

2|~p|3
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Picture of Berry’s Phase in Momentum
Space
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Picture of Berry’s Phase in Momentum
Space
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Recall the Lorentz force
~̇p = ~̇x × ~B

Having a magnetic field ~b in momentum space would
imply

~̇x = p̂ + ~̇p × ~b
where the first term is the original velocity

It is easy to see that the combined effects of both
magnetic fields is to give a net velocity along ~B

direction.
The result is (Stephanov-Yin)

√
G ~̇x =

∂E
∂~p

+ ~B
(
∂E
∂~p
· ~b
)

=
~p
|~p|

+
~p(~p · ~B)

|~p|4
+O(B2)

The second term is the new velocity from triangle
anomaly
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The current from this new velocity is

~J =

∫
d3~p

(2π)3

√
G ~̇x

(
f (0)+ − f (0)−

)
=

∫
d3~p

(2π)3

~p(~p · ~B)

|~p|4
(

f (0)+ − f (0)−
)

=
2
3
· 1

4π2
~B ×

∫ ∞
0

dp
(

f (0)+ − f (0)−
)

=
2
3
· µ

4π2
~B

where∫∞
0 dp

(
f (0)+ − f (0)−

)
= µ

independent of temperature
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Breaking Up The Equilibrium CME Value

1
3 comes from the modification of equilibrium

distribution due to energy shift

Let’s call it “energetic” contribution

2
3 comes from a new component of velocity due to

anomaly, which is more kinematic

Let’s call it “kinematic” contribution

The point: In out-of-equilibrium conditions, the
“energetic” contribution is expected to be lost, while

the “kinematic” contribution always exists
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Let’s consider “shaking” the magnetic field
with some frequency ω

If the shaking is slower than the relaxation time scale
of achieving equilibrium τR, the system will be able to

adjust itself to equilibrium at each moment of time,
and we expect the full value of CME

If ω � τ−1
R , the distribution will not be able to follow

equilibrium distribution, so 1
3 of CME will be lost while

2
3 should remain
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Chiral Magnetic Conductivity at Finite ω
(Kharzeev-Warringa)

Chiral Magnetic Effect is a response of the current to
an external magnetic field

~J(ω) = σχ(ω)~B(ω)

The “chiral magnetic conductivity” σχ(ω) is computed
from the P-odd retarded function

Gij
R = −iθ(t − t ′)〈

[
J i(t), J j(t ′)

]
〉 ∼ iσχ(ω, k)εijlkl
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Expectation from the above analysis

For small frequency ω � τ−1
R , we recover

full equilibrium value, σχ(ω)→ µ
4π2

For ω � τ−1
R , we should get only 2

3 of the
full result, σχ(ω)→ 2

3 ·
µ

4π2
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A Puzzle in Free Fermion Computations
(Kharzeev-Warringa)

One loop computation with free fermion
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(Kharzeev-Warringa)

There is a sudden drop in the real part σ′χ to the value
1
3 of the full CME for any ω > 0. This behavior is

characterized by a function
ω

ω + iε
which is 0 at ω = 0, but is 1 for any ω > 0.
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This means that we have missed an additional
out-of-equilibrium contribution to CME that behaves

For ω → 0, this additional contribution should
vanish, that is, it should not change the
equilibrium value
For ω →∞, this contribution should become −1

3 of
the full result

Where do we find this additional
contribution ?
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Recall that we used the current

~J =

∫
d3~p

(2π)3
~̇x (f eq

+ − f eq
− )

There is a gradient correction to it, arising from the
magnetization current

~J(1) = ~∇× ~M , ~M =

∫
d3~p

(2π)3

(
~p

2|~p|2
(f+ + f−)

)

This correction also contributes to CME at
finite frequency ω 6= 0 !

(Kharzeev-Stephanov-HUY, Phys.Rev. D95 (2017) no.5, 051901)
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The key is the Bianchi identity

d~B
dt

+ ~∇× ~E = 0 , −iω~B + ~∇× ~E = 0

Recall the equation of motion ~̇P = ±~E , and the kinetic
equation

∂f±
∂t

+ ~̇p · ∂f±
∂~p

= −iωf± ± ~E · ∂f±
∂~p

= 0

whose solution is

f± = f (0) + f (1) , f (1) = ∓i
~E · p̂

(ω + iε)
∂f (0)

∂|p|
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Inserting this solution into the gradient correction ~J(1)

~J(1) =
i

ω + iε

∫
d3p

(2π)3

(
p̂

2|p|
× ~∇(~E · p̂)

(
∂f (0)+

∂|p|
− ∂f (0)−
∂|p|

))

= − i
6(ω + iε)

(~∇× ~E)

∫
d3p

(2π)3

1
|p|

(
∂f (0)+

∂|p|
− ∂f (0)−
∂|p|

)

=
ω

6(ω + iε)
~B
∫

d3p
(2π)3

1
|p|

(
∂f (0)+

∂|p|
− ∂f (0)−
∂|p|

)

=
µ

4π2

(
−1

3
ω

ω + iε

)
~B

This behaves precisely as what we need:
It goes to 0 in ω → 0 and −1

3 in ω →∞
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Summary of CME in Equilibrium and
Out-of-Equilibrium at Weak Coupling

Three contributions:
1) Equilibrium Distribution

2) Anomalous Velocity
3) Magnetization Current

ω � τ−1
R ω � τ−1

R
1) 1

3 0
2) 2

3
2
3

3) 0 −1
3

Total 1 1
3

Note that this applies to only the kinetic regime ω � T
where T is the typical momentum of dominant charge

carriers
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Towards a complete picture in perturbative
QCD

With a finite relaxation time τR, we have a good
approximate formula in the kinetic regime ω � T

σχ(ω) = σ0

(
1− 2

3
ω

ω + iτ−1
R

)
Two-flavor perturbative QCD in leading log gives

(Jimenez-Alba, HUY)

τ−1
R ∼ 1.3α2

s log(1/αs)T

In the quantum regime ω � T , a free 1-loop diagram
suffices in leading order

Ho-Ung Yee Anatomy of Chiral Magnetic Effect In and Out-Of-Equilibrium



A complete picture of σχ(ω) in leading order
of perturbative QCD

0 1 2 3 4

ω

T

0.2

0.4

0.6

0.8

1.0

σ (ω)

σ0

αs = 0.2, µA/T=0.1
Blue (Red) curves are real (imaginary) part of σχ(ω)

Dotted curves are from the AdS/CFT
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Dirac/Weyl semi-metal systems

The g-factor can be significantly different from the
relativistic value g = 2: Bi2Se3 has g = 20− 30

The energetic contribution and the magnetization
current should be proportional to the magnetic

moment

JE =
g
6

(
1− ω

ω + iτ−1
R

)
σ0B , JM = −g

6
ω

ω + iτ−1
R

σ0B

The kinematic contribution is independent of ω and is
fixed to reproduce the total equilibrium value σ0

JKM =
(

1− g
6

)
σ0B

The total current is

J =

(
1− g

3
ω

ω + iτ−1
R

)
σ0B
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Thank you!
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