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Hadron resonance gas (HRG) model can describe the QCD EoS as well as the  
2nd order fluctuations of conserved  charge reasonably well at zero net baryon density 
 
How about higher order fluctuations and EoS at non-zero baryon density ? 
How important are the repulsive baryon-baryon interactions ? 
 
In this talk: 
 
1) The virial expansion in the nucleon gas 
 
2) HRG with with repulsive mean field  

in collaboration with P. Huovinen, arXiv:1708.00879, work in progress 



Higher order fluctuations of conserved charges  in T>0 QCD 
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The above combinations should be 0 or 1 in HRG independent of details of hadron spectrum 
and HRG description breaks down  close to the transition temperature (even below Tc) 
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Virial expansion in the nucleon gas 

p = pideal + T
X

ij

bij2 (T )e
�µie�µj

⇡⇡, KK, ⇡N and NK scattering are dominated by resonances:

p ! pideal
⇡,K,N

+ pideal
resonances

Gas of nucleons:

p(T, µ) = p0(T ) cosh(�µ) + 2b2(T )T cosh(2�µ)

p0(T ) =
4M2T 2

⇡2
K2(�M)

b2(T ) =
2T

⇡3

Z 1

0
dE(

ME

2

+M2
)K2

 
2�

r
ME

2

+M2

!
1

4i
Tr


S† dS

dE
� dS†

dE
S

�
,

No resonances in NN interactions

factorization in µ and T dependent part is broken

HRG model  
 
Dashen, Ma, Berstein, 
PR 187 (1969) 345 
Prakash, Venugopalan, 
NPA 546 (1992) 718 
 

bij2 can be related to the S-matrix of scattering of particles i and j



Virial expansion in the nucleon gas (cont’d) 
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 Arndt et al, PRC 76 (2007) 025209 

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0  200  400  600  800  1000

E [MeV]

Y (2J+1) bJ,I=0
s

SP07
SM16

-25

-20

-15

-10

-5

 0

 5

 0  500  1000  1500  2000  2500  3000

E [MeV]

Y (2J+1) bJ,I=1
s

SP07
SM16



Repulsive mean field in the nucleon gas  

Nucleon and anti-nucleon densities
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Olive, NPB  190 (1981) 483   

Assume that the repulsive interactions reduce the single nucleon energies by

U = Knb, where nb is the single nucleon density
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Comparison of repulsive mean field and virial expansion  
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Hadron resonance gas with repulsive mean field  
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strange and non-strange baryons interact the same way 



Comparison with lattice QCD results  
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Bazavov et al,  
PRL 111 (2013) 082301, 
PRD 95 (2017)054504 
     

Open symbols: stout 
4th order 
Bellwied et al 
PRD 92 (2015) 114505 
 
6th order 
D'Elia et al,  
PRD 95 (2017) 094503 
 
 

Repulsive mean field calculations can explain the differences between certain higher 
order fluctuations and correlations; v2 is not described by this simple model 

Assume that only ground state baryons (octet + decuplet) contribute to nB 
higher resonances are treated as free particles 



Pressure with repulsive mean field  

nS = 0µS = 0

Virial expansion works only for baryon chemical potential < 400 MeV  
 
The repulsive mean field reduces the pressure up 24%  
 
For the strangeness neutral case the effects of the repulsive interactions are smaller. 

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 80  90  100  110  120  130  140  150  160  170

P/
P f

re
e

T [MeV]

µB = 0
µB = 100
µB = 300
µB = 400

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 80  90  100  110  120  130  140  150  160  170

P

T [MeV]

µB = 0
µB = 100
µB = 300
µB = 400

p/pideal
p/pideal

Use expanded expressions (in K nB) to calculate the pressure  



Energy density with repulsive mean field  
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Repulsive mean field reduces the energy density up to 30% 
 
For the strangeness neutral case the effects of the repulsive interactions are smaller. 



Freezout at constant energy density  

Assume that freeze-out happens at energy density of 330 MeV/fm3 
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Strangeness neutrality and repulsive interaction reduce the curvature of the  
freeze-out temperature 
 
Strangeness neutrality and repulsive interactions reduce the net baryon density 
at the freeze-out 



Freeze-out line in HRG vs. lattice   
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The curvature of the freeze-out line corresponding to constant energy density 
~330 MeV/fm3 calculated in HRG model with repulsive interactions agrees 
with lattice result of Bazavov et al, PRD 95 (2017)054504 
 



Summary   

•  Repulsive baryon-baryon interactions are important for higher order baryon  
number fluctuations and  baryon strangeness correlations and for EoS at non-zero 
baryon density (already seen in the studies using excluded volume approach, see 
the talk by Vovchenko) 
 
•  Mean field approach is very similar to the virial expansion in the low density regime  
=> constraints on the mean field values  
 
•  The simplest mean field approach can describe the differences between second and 
higher order baryon number fluctuations as well as baryon strangeness correlations, 
but certain baryon-strangeness correlations cannot be described by this simple model 
 
•  The virial expansion is applicable for baryon chemical potential < 400 MeV  

•  Future: virial expansion for strange baryons, missing baryons, going beyond the 
leading order density expansion 


