Characterizing hydrodynamic fluctuations in heavy-ion collisions from effective field theory approach

Pak Hang Chris Lau (MIT)

(Collaboration with Hong Liu and Yi Yin)

Effective action of hydrodynamics - Motivations

- Hydrodynamics formulated mainly in terms of conservation equations
 - Conservation of energy $\nabla_{\!\!\mu} T^{\mu\nu} = 0$
 - Conservation of currents $\nabla_{\!\mu} J^{\mu} = 0$
- But noises have to be incorporated phenomenologically
- Nonlinear interactions and non-equilibrium systems can be treated systematically in this framework
- One can also apply field theory technique (loop corrections etc) if an action is available

P. Kovtun, G. Moore, P. Romatschke JHEP 07 (2014) 123

Alternative approach to hydrodynamics - Effective action

- Hydrodynamics captures the low energy behaviour of a many body system
- An effective theory for a system in a macroscopic state $Tr(\rho_0 \cdots \cdots) = \int D\psi_1 D\psi_2 (\cdots \cdots) e^{iS[\psi_1] - iS[\psi_2]}$
- Starting point : A microscopic action S_{micro}
- Real time evolution of the density matrix and expectation values of the physical quantities : Schwinger-Keldysh formalism (Closed Time Path, CTP)

• In a non-equilibrium system : the final state is not known.

- Use this CTP contour to avoid this problem
- The degrees of freedom are doubled $\psi
 ightarrow (\psi_1, \psi_2)$
- Insert operators along the contour to compute correlation functions
 - A generating functional $e^{W[\phi_1,\phi_2]} = Tr(\rho_0 \mathcal{P} e^{i\int dt (\mathcal{O}_1(t)\phi_1(t) \mathcal{O}_2(t)\phi_2(t))})$

J. S. Schwinger J. Math. Phys. 2 (1961) 407. L. V. Keldysh Sov. Phys. JETP 20 (1965) 1018

Properties of CTP

$$e^{W[\phi_1,\phi_2]} = Tr(\rho_0 \mathcal{P} \ e^{i\int dt \ (\mathcal{O}_1(t)\phi_1(t) - \mathcal{O}_2(t)\phi_2(t))})$$

- W = 0 when $\phi_1 = \phi_2$
- Another convenient basis :
 - $\phi_r = \frac{1}{2}(\phi_1 + \phi_2)$ average field and $\phi_a = (\phi_1 \phi_2)$ is the noise.
- In this basis, the two point functions are

$$e^{W[\phi_r,\phi_a]} = Tr(\rho_0 \mathcal{P} e^{i\int dt \,(\mathcal{O}_a(t)\phi_r(t) + \mathcal{O}_r(t)\phi_a(t))})$$

 $G_{ra}(t_1, t_2) = G_R(t_1, t_2)$ $G_{ar}(t_1, t_2) = G_A(t_1, t_2)$ $G_{rr}(t_1, t_2) = G_S(t_1, t_2)$

• Given that $\rho_0 = \frac{1}{Z_0} e^{-\beta_0 (H-\mu_0 Q)}$, *W* satisfies the Kubo-Martin-Schwinger condition. This leads to the Fluctuation-dissipation theorem

$$G_S = \frac{i}{2} \coth \frac{\beta_0 \omega}{2} (G_A - G_R)$$

Effective action $Tr(\rho_0 \cdots \cdots) = \int D\psi_1 D\psi_2 (\cdots \cdots) e^{iS[\psi_1] - iS[\psi_2]}$

- $\psi_{1,2}$ contains
 - long-lived gapless (hydrodynamical modes)
 - short-lived gapless modes and gapped modes (Integrate out)
- The effective action can then be written as $Tr(\rho_0\cdots\cdots) = \int D\chi_1 D\chi_2 (\cdots\cdots) e^{iS_{hydro}[\chi_1,\chi_2,\rho_0]}$

Effective action from generating functions

- Conserved quantities -> generating functions -> correlation functions
- Generating function:
 - integrating out the dynamical field of the field theory

$$e^{W[g_{1\mu\nu},g_{2\mu\nu}]} = Tr\left(\rho_0 \mathcal{P} \ e^{i\int d^d x \left(T_1^{\mu\nu}g_{1\mu\nu} - T_2^{\mu\nu}g_{2\mu\nu}\right)}\right)$$

- In this formalism, the corresponding dynamical field which we have integrated out is X^{μ}

$$e^{W[g_{1\mu\nu},g_{2\mu\nu}]} \Rightarrow \int DX_{1\mu}DX_{2\mu}e^{iI[h_{1ab};h_{2ab}]} \qquad h_{iab} = \frac{\partial X_i^{\mu}}{\partial \sigma^a}g_{i\mu\nu}\frac{\partial X_i^{\nu}}{\partial \sigma^b}$$

Effective action - interpretation

- The dynamical fields $X_i^{\mu}(\sigma^a)$ = physical spacetime
- σ^a = fluid spacetime
- The σ^a coordinates : label the fluid elements and their individual time
- $X^{\mu} \Rightarrow$ coordinates of the corresponding fluid element labelled by σ^{a} .
- Expressing the action in terms of $X^{\mu}(\sigma^{a})$ = Lagrange description
- $\sigma^{a}(X^{\mu})$ corresponds to the Euler description.

Connection to hydrodynamics variables

• With the interpretation of $X_i^{\mu}(\sigma)$, we can then identify the standard hydrodynamics variables

$$u_i^{\mu} = \frac{1}{b_i} \frac{\partial X_i^{\mu}}{\partial \sigma^0}$$

• And in order to include temperature into the system, we introduce an extra scalar field $\phi(\sigma)$. The temperature is then

 $T(\sigma) = T_0 e^{-\phi(\sigma)}$

Symmetries of the fluid spacetime

- With the fluid spacetime coordinates σ^a in mind, we expect they satisfy the following symmetries.
- Time-independent reparameterisations (relabelling fluid elements)

$$\sigma^i \to \sigma'^i(\sigma^i), \qquad \sigma^0 \to \sigma^0$$

• Time-diffeomorphisms (each fluid element has its own internal clock) $\sigma^0 \rightarrow \sigma'^0(\sigma^0, \sigma^i), \qquad \sigma^i \rightarrow \sigma^i$

Effective action as an expansion

• Symmetries -> write down action order by order in the noise (X_a) and derivative $(\partial_{\sigma^0}, \partial_{\sigma^i})$

$$S = \int d^{d}\sigma \left| \det \frac{\partial X}{\partial \sigma} \right| \sqrt{-g} \left(\mathcal{L}_{ideal}^{(1,0)} + \left(\mathcal{L}^{(1,1)} + \mathcal{L}^{(2,0)} \right) + \cdots \right) \right|$$

• (*n*, *m*) represents the number of of *a*-field and number of derivative in the corresponding part of the lagrangian

• The terms are related by KMS condition

Bjorken flow

- In heavy ion collisions, the flow of QGP can be described by the Bjorken flow
- It is convenient to consider the flow in a Boost invariant coordinate given by (τ, η, x, y) where the proper time $\tau = \sqrt{t^2 - z^2}$ and rapidity $\eta = \arctan\left(\frac{z}{t}\right)$
- Then the velocity field is $u^{\mu} = (1,0,0,0)$ with $u^{\mu}u_{\mu} = -1$ and the metric is $g_{\mu\nu} = \text{diag}(-1,\tau^2,1,1)$

Effective action for Bjorken flow up to second order expansions

• The Lagrangian in Landau frame is

$$\mathcal{L} = \frac{1}{2} \left(\frac{\epsilon}{b^2} \dot{X_r}^{\mu} \dot{X_r}^{\nu} + p \Delta^{\mu\nu} - \eta_{\nu is} \beta^{-1} \left(\Delta^{\mu\alpha} \Delta^{\nu\beta} - \frac{\Delta^{\mu\nu} \Delta^{\alpha\beta}}{3} \right) \left(\nabla_{\!\alpha} \beta_{\beta} + \nabla_{\!\beta} \beta_{\alpha} \right) \right) \mathcal{G}_{a\mu\nu} + \frac{i \eta_{\nu is}}{2} \beta^{-1} \Delta^{\mu\alpha} \Delta^{\nu\beta} \mathcal{G}_{a\mu\nu} \mathcal{G}_{a\alpha\beta} + O(\mathcal{G}_a^3) \Delta^{\mu\nu} = g^{\mu\nu} + \frac{1}{b^2} \dot{X}^{\mu} \dot{X}^{\nu} \qquad \mathcal{G}_{a\mu\nu} = g_{a\mu\nu} + \nabla_{\!\mu} X_{a\nu} + \nabla_{\!\nu} X_{a\mu} \qquad \beta_{\mu} = \beta u_{\mu}$$

• The standard equation of motion can be recovered by varying the action w.r.t the *a*-variables $X_{a\mu}$ and for Bjorken flow

$$\partial_{\tau}\epsilon + \frac{\epsilon + p}{\tau} = \frac{4\eta_{vis}}{3\tau}$$

Correction from fluctuation

• With the effective action, we can include the effect of fluctuation by expanding the dynamical fields about the classical solution

$$X_{r/a}^{\mu} = X_{r/a}^{\mu cl} + \delta X_{r/a}^{\mu}, \qquad \phi = \phi^{cl} + \delta \phi$$

• The two-point correlation functions of the fluctuation can then be read off from the action expanded to second order in fluctuation

$$\widehat{D}(X_r^{cl},\partial_{\mu})G_{\delta X_{r/a}\delta X_{r/a}}(x-y) = \delta(x-y)$$

Compare to other approach

• Assuming $\frac{\omega \eta_{vis}}{(\epsilon+p)c_s^2} \ll 1$ and taking $\gamma_{\eta} = \frac{\eta_{vis}}{\epsilon+p}$ to be a constant, we reproduce the same equations for the perturbation of the stress-tensor

$$0 = \left(\frac{\partial}{\partial\tau} + \frac{1+c_s^2}{\tau}\right) \delta e + i\vec{k}_{\perp} \cdot \vec{g}_{\perp} + i\kappa g^{\eta} + \xi^{\tau}, \quad (56a)$$

$$\vec{0}_{\perp} = \left(\frac{\partial}{\partial\tau} + \frac{1}{\tau}\right) \vec{g}_{\perp} + c_s^2 i\vec{k}_{\perp} \delta e + \gamma_{\eta} \left(k_{\perp}^2 + \frac{\kappa^2}{\tau^2}\right) \vec{g}_{\perp}$$

$$+ \frac{1}{3} \gamma_{\eta} \vec{k}_{\perp} \left(\vec{k}_{\perp} \cdot \vec{g}_{\perp} + \kappa g^{\eta}\right) + \vec{\xi}_{\perp}, \quad (56b)$$

$$0 = \left(\frac{\partial}{\partial\tau} + \frac{3}{\tau}\right) g^{\eta} + \frac{c_s^2 i\kappa}{\tau^2} \delta e + \gamma_{\eta} \left(k_{\perp}^2 + \frac{\kappa^2}{\tau^2}\right) g^{\eta}$$

$$+ \frac{1}{3\tau^2} \gamma_{\eta} \kappa \left(\vec{k}_{\perp} \cdot \vec{g}_{\perp} + \kappa g^{\eta}\right) + \xi^{\eta}. \quad (56c)$$

Y. Akamatsu, A. Mazeliauskas, D. Teaney Phys.Rev. C95 (2017) no.1, 014909

Background field method

- Technique in QFT -> 1PI effective action
- Instead of expanding about the classical solution, we consider an expansion about an arbitrary background X_0 and construct a 1PI effect action by integrating out the action of second order fluctuation
- At second order -> a Gaussian integral

$$e^{\Gamma[X_0]} = e^{i\left(S[X_0] + \frac{1}{2} \operatorname{Tr}\left(\ln\left[\frac{\delta^2 S[X_0]}{\delta(X(x))\delta(X(y))}\right]\right)\right)}$$

 "Noise-corrected" correlation function can be obtained by differentiating w.r.t. the background fields. Background field method for Bjorken flow

• The fluctuations of the action at second order in $(\delta X_r, \delta X_a)$ take the following form in the CTP formalism

$$(\delta X_r \quad \delta X_a) \begin{pmatrix} 0 & D \\ D^{\dagger} & C \end{pmatrix} \begin{pmatrix} \delta X_r \\ \delta X_a \end{pmatrix}$$

• The Green functions are then given by the inverse of the matrix

$$\begin{pmatrix} -\frac{C}{D^{\dagger}D} & \frac{1}{D^{\dagger}} \\ \frac{1}{D} & 0 \end{pmatrix}$$

Bjorken flow

• The stress tensor receives loop correction in the following form

$$\partial_{\tau}\epsilon + \frac{\epsilon + p}{\tau} - \frac{4\eta_{vis}}{3\tau} = \text{loops}$$

$$\delta T_{1-loop}^{\mu\nu} = \bigcirc$$

Conclusion

- CTP formalism provides a good framework for effective field theory of hydrodynamics
- This formalism reproduces the conventional perturbation treatment of hydrodynamics
- With the effective action, we can apply field theory technique to capture noise corrections systematically
- We applied the background field method to include the full quantum correction to the simple Bjorken flow