Recent progress in understanding Confinement and Chiral symmetry from Instanton-dyons

Rasmus Larsen

R. Larsen and E. Shuryak: arXiv:1511.02237 [PhysRevD], arXiv:1605.07474 [PhysRevD]

Stony Brook University

August 9. 2017

- Motivation and method
- Introduction
 - Properties of dyons and 2-point interactions
- Gas of Dyons (Ensemble)
 - Find configurations that minimize free energy density f
- Fermions
 - Obtain chiral condensate from eigenvalue distribution
- Results

- Objective:
 - Understand chiral symmetry breaking and confinement transitions
- Method:
 - Approximate path integral with instanton-dyons contribution to the path integral (Semi-classical method)
- Tools:
 - · Metropolis algorithm used to obtain the free energy
- Results:
 - Density of dyons, chiral condensate and Polyakov loop as a function of coupling constant/temperature

Instanton-dyons 1

- Calculate path-integral by expanding around classical solutions (local minimums)
- Work with 2 colors $N_c = 2$
- Require solution to have a non-zero expectation value of $< A_4^3 > \equiv 2\pi T \nu$, holonomy ν

Polyakov loop
$$P = \frac{1}{N_c} tr(Path[\exp(i \oint A_4 d\tau)])$$

= $\cos(\pi\nu)$

- Solution found by Lee, Lu[hep-th/9802108] and Kraan, van Baal [arXiv:hep-th/9806034]
- SU(2) Caloron composed of 2 dyons each a solution
- Dyons called M and L dyons

Dyon properties

• M dyons depends on ν and L dyons on $1-\nu$

	M	\bar{M}	L	\bar{L}
$\frac{g^2 S_{cl}}{8\pi^2}$	ν	ν	$1 - \nu$	$1 - \nu$
Q_T	ν	$-\nu$	$1-\nu$	$\nu - 1$
е	1	1	-1	-1
m	1	-1	-1	1

- Coulomb like interaction, with opposite sign on electric charges
- Attractive case obtained from gradient flow

Ensemble on 3-sphere

• Simulation done on 3-sphere with 64 dyons

- Size of M dyons scales as $\frac{1}{u}$
- Size of L dyons scales as $\frac{1}{1-\nu}$
- Action of M dyons are $u 8\pi^2/g^2$
- Action of L dyons are $(1-\nu)8\pi^2/g^2$

Free Energy Density

- At volume $V \to \infty,$ the dominating configuration is the parameters that minimizes free energy density

$$f = \frac{4\pi^2}{3}\nu^2\bar{\nu}^2 - 2n_M \ln\left[\frac{d_{\nu}e}{n_M}\right] - 2n_L \ln\left[\frac{d_{\bar{\nu}}e}{n_L}\right] + \Delta f_{Interactions}$$
$$d_{\nu} = \Lambda \left(\frac{8\pi^2}{g^2}\right)^2 e^{-\frac{\nu 8\pi^2}{g^2}}\nu^{\frac{8\nu}{3}-1}/(4\pi)$$
$$\frac{8\pi^2}{g^2(T)} = b \cdot ln\left(\frac{T}{\Lambda}\right), \ b = \frac{11}{3}N_c - \frac{2}{3}N_F$$

- Free energy density contains 3 items
 - The GPY potential that prefer trivial Holonomy
 - The entropy due to the dyons moving around
 - $(\Delta f_{Interactions})$ Corrections to the energy due to the interactions of the dyons
- GPY potential [Gross, Pisarski, Yaffe, Rev. Mod. Phys. 53, 43]
- d_{ν} [Diakonov, Gromov, Petrov, Slizovskiy: arXiv:hep-th/0404042]

Finding the dominating Configuration

- We minimize free energy in the following parameters:
 - Density of M dyons n_M and L dyons n_L
 - Holonomy ν
 - Screening mass describing the fall off of the fields

- Dimensionless density : (0.47, •), (0.37, ■), (0.30, ♦), (0.24, ▲), (0.20, ▼), (0.16, ◦), (0.14, □), (0.12, ◊), (0.10, △)
- The minimization is done as a function of Action $8\pi^2/g^2$

$$S = \frac{8\pi^2}{g^2(T)} = b \cdot ln\left(\frac{T}{\Lambda}\right), \ b = \frac{11}{3}N_c - \frac{2}{3}N_F$$

• Will focus on the cases of two fermion flavors

$$\Delta S_{fermion} = -\log\left(\det[\mathcal{D}_u]\right) - \log\left(\det[\mathcal{D}_d]\right)$$

- The subscript denotes the flavor of the quark
- We will look at the cases:
 - Standard SU(2) QCD with 2 anti-periodic fermions
 - Deformed QCD with imaginary chemical potential
 - Z_2 -symmetric QCD with one periodic and one antiperiodic fermion

• Expand the Dirac operator in subspace of fermionic zero-modes

$$< i \mid D$$
 $j > = T_{ij} \equiv T_{ij}$

• The determinant of the Dirac operator approximated as closed loops of hopping over zero modes [Shuryak, Verbaarschot:Nucl.Phys. B341 (1990) 1-26]

$$Det \begin{vmatrix} 0 & T_{ij} \\ -T_{ji} & 0 \end{vmatrix} = \sum_{\text{Closed loops}} \underbrace{\mathbb{t}}_{\mathbb{t}} + \underbrace{\mathbb{t}}_{\mathbb{t}} + \dots$$

Zero Modes

· Periodicity condition affect the zero modes

$$\begin{split} \psi(t+1/T) &= \psi(t) \exp(i2\pi z) \\ P &= \frac{1}{2} tr(\exp[i2\pi \times diag(\mu,-\mu)]) \end{split}$$

• Zero mode behavior described by angles on S_1

- $T_{i,j} \propto \exp(-2\pi r T |z_i \mu|)$
- Periodic zero modes on M dyons and anti periodic on L dyons

Chiral Condensate

• The Banks-Casher relation for the chiral condensate tells us that

$$|\langle \bar{\psi}\psi \rangle| = \pi \rho(\lambda)_{\lambda \to 0, m \to 0, V \to \infty}$$

• For finite volume we need to look at eigenvalue distribution around 0

• Done for $64 \ {\rm and} \ 128 \ {\rm dyons}$

Eigenvalue Distribution

• The slope of the eigenvalue distribution dependent on the number of flavors N_f [Smilga, Stern, Phys. Lett. B 318, 531 (1993)],[Osborn, Toublan, Verbaarschot, hep-th/9806110]

$$\rho(\lambda) = \frac{\Sigma}{\pi} \left(1 + \frac{|\lambda|\Sigma(N_f^2 - 4)}{32\pi N_f F_c^4} + \ldots \right)$$

- For standard boundary conditions we get flat for $N_f = 2$
- Z_2 fermions behaves as two independent $N_f = 1$ gases

Rasmus Larsen (Stony Brook University) Recent progress in understanding Confinement and Ch

Results

- (left) Chiral condensate for M (Σ_M), L (Σ_L) for Z_2 QCD, compared to standard fermions (Σ)
- (right) Polyakov loop for Z_2 QCD P_{Z2} and standard fermions P_s

- Chiral condensate stay non-zero for Z₂-symmetric QCD
- Similar to SU(3) results [T. Misumi, T. Iritani and E. Itou, arXiv:1508.07132]

Results 2

• Dyon densities for standard fermions (left) and Z_2 QCD (right)

• Action S related to temperature through running coupling constant

$$S = \frac{8\pi^2}{g^2(T)} = b \cdot ln\left(\frac{T}{\Lambda}\right), \ b = \frac{11}{3}N_c - \frac{2}{3}N_F$$

- Repulsive core drove the Polyakov loop towards the confining value
- Standard fermions gave a transition from zero to non-zero chiral condensate
- Chiral transition dependent on change in the Polyakov loop
- Compared to Z_2 -symmetric QCD with 1 periodic and 1 antiperiodic flavor
- Z_2 -symmetric QCD: Center symmetry restored and phase transitions changed
- Z₂-symmetric QCD:: Chiral symmetry never restored