

Excitation and saturation of the spinodal instability

Maximilian Attems

arXiv:1703.09681

Collaborators: Yago Bea (UB), Jorge Casalderrey-Solana (Oxford), David Mateos (UB), Miquel Triana (UB), Miguel Zilhao (UB)

CPOD 2017

Phase transition:

melting water out of ice

Gregory-Laflamme Instability:

Black ring pinching off

gauge/gravity correspondence:

bridge between physical phenomena in gauge theories and gravity.

Outline

Excitation and saturation of the spinodal instability

- Introduction gauge/gravity phase diagram
- Introduction Gregory-Laflamme instability
- Introduction gauge gravity duality
- Non-conformal General Relativity setup
- Non-conformal thermodynamics
- Spinodal instability
- Inhomogeneous horizon
- Hydrostatic + Hydrodynamic evolution
- Phase separation

Introduction gauge/gravity phase diagram

Black-hole engineered critical point w QCD lattice match [Critelli, Noronha, Noronha-Hostler, Portillo, Ratti, Rougemont 2017]

Baryon susceptibility χ_2 extended in the full $T - \mu_B$ plane and critical point located at $T_{CEP} = 89$ MeV and $\mu_B^{CEP} = 724$ MeV

Introduction Gregory-Laflamme instability

Classical instability affecting black holes in higher dimensions gives rise to a series of bulges connected by strings that become thinner over time. [Gregory, Laflamme 1993; Emparan, Reall 2002; Figueras, Kunesch, Tunyasuvunakool 2015]

Singularities form without being hidden behind a black hole horizon. Numerical general relativity simulation thanks to advanced parallelized mesh confined code GRChombo.

Introduction gauge gravity duality

Quantum gravity in d + 1 dimension AdS \leftrightarrow QFT in d dimension

IIB string theory on $AdS_5 \times S_5 \leftrightarrow \mathcal{N} = 4$ Super-Yang-Mills [Maldacena 1998, Witten 1998]

shear viscosity over entropy density ratio $\frac{\eta}{s} = \frac{1}{4\pi} \approx 0.08$ [Policastro, Son, Starinets 2001]

Introduction gauge gravity duality

Quantum gravity in d + 1 dimension AdS \leftrightarrow QFT in d dimension

Holographic dictionary relates:

Black hole

 $g_{\mu\nu}$

Equilibrium state with temperature $T_{\mu\nu}$

Introduction gauge gravity duality

Use of the duality:

To solve complicated dynamical problems in non-abelian theories. As a source of new modeling ideas for strongly coupled QGP.

Non-conformal General Relativity model

Dual field theory: 'mimics'a deformation of N=4 SYM with a dimension 3 operator ${\it O}$ and Λ as 'mass'

$$S_{
m Gauge Theory} = S_{
m conformal} + \int d^4 x \Lambda O$$

Small IR modification of the model leads to rich phase structure

Non-conformal thermodynamics

Einstein-Hilbert action coupled to a scalar with non-trivial potential (single parameter ϕ_M) in five-dimensional bottom-up model:

$$S=rac{2}{\kappa_5^2}\int d^5x\sqrt{-g}\left[rac{1}{4}\mathcal{R}-rac{1}{2}\left(
abla\phi
ight)^2-V(\phi)
ight]$$

Holographic renormalization [Bianchi, Freedman, Skenderis 2002]

$$V(\phi) = -\frac{1}{12\phi_M^4}\phi^8 + \left(\frac{1}{2\phi_M^4} \mp \frac{1}{3\phi_M^2}\right)\phi^6 - \frac{1}{3}\phi^4 - \frac{3}{2}\phi^2 - 3$$

Quasi-adiabatic energy density evolution of black branes afflicted by the Gregory-Laflamme instability:

The excited unstable mode grow until non-linear saturation.

Energy density versus temperature for the gauge theory:

The dashed red curve is locally unstable, the dotted green curve metastable.

momentum dependent growth rate dictated by the sound dispersion relation $\Gamma(k) \simeq |c_s| k - \frac{1}{2T} \left(\frac{4}{3}\frac{\eta}{s} + \frac{\zeta}{s}\right) k^2$

Inhomogeneous horizon

Hydrodynamics description with transport coefficients c_L , f_T : $P_{L/T}^{\text{hyd}} = P_{\text{eq}}(\mathcal{E}) + c_{\text{L/T}}(\mathcal{E})(\partial_z \mathcal{E})^2 + f_{\text{L/T}}(\mathcal{E})(\partial_z^2 \mathcal{E})$

Pressure evolution:

Pressures agree with hydrodynamic prediction for a different state

Final entropy density extracted from the area of the horizon and estimated from the equation of state

Hydrostatic + Hydrodynamic evolution

Hydro description $P_{L/T}^{\mathrm{hyd}} = P_{\mathrm{eq}}(\mathcal{E}) + c_{\mathrm{L/T}}(\mathcal{E})(\partial_z \mathcal{E})^2 + f_{\mathrm{L/T}}(\mathcal{E})(\partial_z^2 \mathcal{E})$

Pressure evolution:

Pressures agree with hydrodynamic prediction for a different state

Pressures predicted by hydro match:

Early time behaviour with exponential decay of quasi-normal modes

Phase separation

Different quasi-normal mode relaxation in different phases

Plateaus touching both stable phases [Janik, Jankowski, Soltanpanahi 2017]

Phase separation II

Stable middle peak, 2nd side peak in metastable phase growing out of unstable flat side region.

Phase separation II

Stable middle peak, 2nd side peak in metastable phase growing out of unstable flat side region.

- First simulation of a holographic spinodal instability, now also reaching phase separation
- Excitation of the Gregory-Laflamme instability
- New example of the applicability of hydrodynamics to systems with large gradients in energy densities - even in non-trivial phase structure - both for the time evolution of the spinodal instability and the static final states
- Final set of static inhomogeneous black branes
- Holographic non-conformal shockwaves see talk next session
- More studies are on the way