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Part I: Hydrodynamic fluctuations away from the Critical Point



Thermal fluctuations:
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Sound modes in uniform plasma

These hard sound modes are part of the bath, giving to the pressure and shear viscosity

Ne(k,t) = (e*(k,t)e(k,t)) =T"c,
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In an expanding system these correlators will be driven out of equilibrium.

This changes the evolution of the slow modes.



A Bjorken expansion
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1. The system has an expansion rate of (%u“ — 1/7‘

2. The hydrodynamic expansion parameter is

_ T _n
T =

and corrections to hydrodynamics are organized in powers of €

T =p|ll+ O(e) + O() +]
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1st order 2nd order

High £ modes are brought to equilibrium by the dissipation and noise



The transition regime:

e There is a wave number where the damping rate competes with the expansion

1
2
Yk ~ .
—— —~—
damping rate expansion rate
and thus the transition happens for: Y =n/(e + p)
1
k~k, = need k > k. to reach equilibrium!
VInT
e This is an intermediate scale ks = 1/(7+/€), e=n/(e+p)T
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We will determine the phase-space density of sound modes with k ~ k.
(using the scale separation € K< \ﬁ <& 1 to simplify the problem)



Long range
in rapdity, ve, . ..

Short range
in rapidity soundlets
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Determining the phase space density of sound — linearized (stochastic) hydro

1. Evolve fields of linearized hydro with bare parameters po(A), n9(A), so(A) etc

da(k) = (e(k). g7 (k). g (k). o7 (k)

2. Then the equations are schematically exactly the same

dqﬁzik) = La(k) ¢p(k)+  Dady  +&  (Ea&p) = 27Dy (K)o
N—— \ ,

ideal ~ ¢k VisC ~ — nok2

3. Break up the equations into eigen modes of L, and analyze exactly same way:

right moving sound left moving sound two diffusion modes

~

Ay = Ficgk A = —icsk Ar =0
So for k in the z direction, work with the following linear combos (eigenvects)
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O and O = or =0,



The hydro-kinetic equations without exapansion

1. Compute how the phase-space density of sound (squared amplitude) evolves:
N—I——I—(ka t) — <§bj—(k7 t)¢+(ki, t)> NTlTl — <¢;1 (ka t)ngl (kv t)>

2. The phase space distribution evolution (hydro-kinetic equation):
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phase-space damping to equilibrium

and similar equations for N__, Nz, r, and Nr,r,. Here
N{L = T?¢, = equilibrium
3. Neglect off diagonal components of density matrix in eigen-basis

Now we will do the same for a Bjorken expansion



The distribution of sound modes during Bjorken expansion:
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This (non-equilibrium) distribution of sound modes has consequences ...



The distribution of sound modes during Bjorken expansion:
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This (non-equilibrium) distribution of sound modes has consequences ...



Part Il: Hydrodynamic fluctuations transiting the Critical Point

Long range
in rapdity, v, ...

//N

Short range
in rapidity soundlets

What happens to the soundlets while transiting the critical point?



ISing Model Fluctuations: Onuki-phase transition dynamics

h
y=larger flucts
C'yy=smaller flucts
—
coexistence T, T

e Thermodynamic variables and their equilibrium fluctuations

A = (M, dess) XAB = <5a:A5a; )
magnetization and energy density fluctuélons

e Largest and smallest fluctuations, det Xis = xCs

oM
Xll _
1S ah

(X12)2
CM EXi22 . 1S
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= largest fluctuations = §7}_ " v =1.2

= smallest fluctuations= 07} a=0.1



QCD hydrodynamic fluctuations:

1. Thermodynamic variables and their conjugates

. S o
= e(k),n(k), g'(k) 0Xq(k) = g =B, i, pu’
energy, densit?, momentum conjugates
2. We will study
X (k) = <aza(k)azb(—k)>
equilibrium

3. Also study pressure fluctuations:
op=p*6X, (p%,p")=(T(e+p), Tn)

which determine the speed of sound

(0p)*) =T(e+p)es = p"x,'p°

“nice little formula”



From QCD to ISing and back Onuki phase transition dynamics

Assume a linear relation between reduced parameters, e.g. (%, h) & (5—“ 5—T>

e’ Te
ozt =M4 oab
N~ —~—
Ising fields QCD fields

Thermodynamic conjugates obey the inverse linear map, Xis = M_lXQCD

M S

Ising

QCD-like phase diagram

We will take the simplest mapping:

M =M" 05
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magnetization entropy



Hydrodynamic Fluctuations and Dynamics with Baryon Number

Linearized equations of motion for e, g, and now n

dx®(k
* ( ) = ﬁab(k)Xb(kﬁ>—|— AabXb + &a
dt - ~ 7 N e’ N~
ideal viscosity+conductivity  noise

1. New diffusive (zero) mode for the entropy per baryon fluctuations

e+ p
n

do = de —

on =Tno (i)

n

which satisfies (dpdo) = 0.

2. Fluctuations of o obey a relaxation type equation, N?7 = (do(k,t)do(—k,1))

oo 2
dN°7 2T (e + p)Ak INT — x°7] .
dt X0

\ - 4
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relaxation controlled by A =conductivity

where X7 = 2 det X% is the static susceptibility for o



Mapping entropy/baryon fluctuations onto the ising (Onuki - Phase transition dynamics)

1. The speed of sound approaches zero like the smallest ising susceptibility
2 —1.b
T(e+p)c; =p*X ,"p

Ayp—1 B dp \* 1
sound =P XABp ~ ﬂsd? @
1S

the smallest susceptibility

\

2. The susceptibility matrix also transforms detX’ = (detM)? detXis o< xCus

3. The fluctuation in o diverge as the largest susceptibility

X7 = 2 det X o X
\/
largest ising susceptibility

The fluctuations in the entropy per baryon diverge maximally like x

(independently of how the mapping to the ising variables is done!)



Summary of equation for fluctuations in the specific entropy 0 = nd(s/n)

AN (k,t) 2ok’

— NO'O' . k‘
1. Definitions:
N°? = N9  xmapping parameters
——
flucts of o
Aeff = A X mapping parameters
conductivity

2. Model susceptibility near critical point as a function of £ with correlation length &

(critical-exponent 17 = 0.02)

Xo (§/€0)2—77
1+ (k7T

susceptibility x (k)

Naa(kat)’equﬂ — X(k) —

We will solve this equation to monitor the equilibration of various wavenumbers



Transiting the critical point

1. Pass right through the critical point at late time 7 = 7, define t = 7 — 7(:

e on__t
n———
' Q — 7;’0 Q
_ S 0s  t
87—8——5 SC_ TQ+ A
set to zero

Set A = 0 to go directly through the critical point.

2. The (ising) reduced Tis and correlation length behaves av = v /(1 — «) ~ 0.71

| e av
t
01 X (H> and E=1Y, (TQ>
TQ 1t



Dynamical critical eXponen’[S Son and Stephanov most helpful

1. The fluctuations of 6o = nd(s/n) satisfy:

B 2ot k?

é)ﬁvoa — ﬁ&oa__;x L
t X (k) | (+)
— I (REP(1+ (REPT) [N~ x(R)]
Xol5(&/Lo)*
2. Then the equilibration time for k& ~ 1 :
< 62
Teq(f) = TR, é with z2=4—n and Tr, = Xo%o
€0 N Aeﬁj
equilibre;[?on time dynamic critital exponent micro r;I;x-time

The equation to be solved is :

2(k€)*(1 + (kE)*™)
7éq(§)

O N7 (k,t) = — N7 (k,t) — x(k,t)]



Kibble-Zurek Scaling of Equation
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Kible,Zurek; Berdnikov, Rajagopal; Mukherjee, Venugopalan, Yin

£(t) =L, (ﬁ)
Teq(§) =T, <£é:) ) Z

1. There is a timescale, t = ty,, where the relaxation rate can’t keep up with ()

2. Find a Kibble-Zurek time scale, ti,, and length, £y,

1

Teq(E(ta))
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gkz :go (
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atf(tkz) _ a_y
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rate-of change of £(t)
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Kibble-Zurek rescaled equation:

1. Measure all lengths, wavenumbers, and times in terms of £y, and ty,

§

Ekz

t

and k =kl and & =
tkz

t

2. Also rescale the correlator, N7 — ]\_f“/xoﬁiz_”, motivated by equilibrium:

Above Critical Point

Below Critical Point

T
T=3 — |
t=5 —
equilibrium .
\ \:\\f 1
t=5 I
| |
2 2.5



Summary of Scales

1. The small parameter is the ratio of microscopic length to system size:

Tr, micro scale 1

€ — —_— ~~r —
To  Mmacroscale 7
2. Hierarchy of scales:
1
N , —~— —~— l,
~ V9 hyd-kinetics longest critical fluct ~

microlength

which are of relative order

e<Ve< B «1l o 014<038<0.70<1

3. The duration of the KZ regime is short compared to 7, (parametrically only)

Th, K lhy K To o €< % «1

~ 0.6
May not have a clear separation of scales in practice



————————————————————

Expanding plasma k ~ %

\’02’ U3, ...

J

Normally equilibrated except at CP
responsible for critical IR behavior
Modified non—flow

N —7 Particles

Resonance decay to non—flow

/




Real correlation functions at high energies (see W. Llope)

Correlation function Long range rapidity flucts

Find the CP in here
at lower energy

Look for short range in 17 entropy/baryon correlations

with significant higher-point cumulants



Summary
1. Away from the critical point, for wavenumbers of order

e+ p
nT

k2> k, =

the system transitions to equilibrium.

2. Clarified where critical fluctuations are relevant

Khydro < K < Kz
—~— —~—

~ V9 hyd-kinetics longest critical fluct

3. Encouraged experimentalists to study non-flow. ..

< !
Co
"~
microlength

(a) Look for significant short-range entropy/baryon higher point cumulants

4. Left out of the talk due to time: What happens when you miss the critical point?

= &5(5/@ = a finite detuning

Sc
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Transiting close to the critical point

1. Pass close to the critical point at late time 7 = 7.

2. The “detuning” A acts like a magnetic field regulating critical dynamics

A= —i(s/n)

a small detuning

The detuning limits the rate of change of critical fluctuations



Transiting close to the critical point:

e The “detuning” A = 7=0(5/m) regulates the critical dynamics.

The timescale for this regulation is determined by the scaling equation of state:

1—
teross ™ TQ X A( )/B
N~ N——
only timescale  only dimensionless number

e We will remain in equilibrium if the system is sufficiently detuned
teross = tky

e Find that

- B/(vz+1—a)
s (22)
Q

- 0.096
- (3
Q

\ &

or

Y

A very small power
The Kibble-Zurek mechanism is probably the dominant regulator of critical dynamics

since the power 0.096 is small.
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Transiting close to the critical point

-~

-

1. Pass close to the critical point at late time 7 = 7, definet = 7 — 7(:

n=-——
T TQ ni TQ
TO — 0 S O N~
small

2. The “detuning” A acts like a magnetic field regulating critical dynamics

A= 5E/m)
Sc

a small detuning



Time-scale for the maximal equilibrium fluctuations: see Berdnikov,Rajagopal hep-ph/9912274

1. The correlation length is a function of the scaling variable, £ = h™"/5 f(z)

<~ —~— ——

scaling-var reduced Tis  (reduced field)_l/ po

2. The correlation length is maximal for z ~ 1. With

5_/'7’ ~ _tCI'OSS and @ ~ A . tCI’OSS

Ne TQ Sc TQ

we find the timescale for the maximal correlation length

1—
Leross ™ TQ X A( @)/P
~~ S——
only timescale  only dimensionless number

For t ~ t.ross the correlation length is regulated by the detuning A



The correlation Iength: numerical data Engels,Fromme,Seniuch, cond-mat/0209492

Leross OX TQA(l_a)/B

0.6] -
0.50 :
Q\: .
>
"5 O4j n
§ :
0.3/ _
0.2/ :
—4 - 0 > 4
t/tcrOSS

If the system is sufficiently detuned (i.e. tcross > T1») We remain in equilibrium



Comparing the Kibble-Zurek and crossing time-scales

1. We will remain in equilibrium for

tcross > tkz

2. Find that

- B/(vz+1—a)
s (2)
Q

- 0.096
(3
Q

\ . J/
-~

A very small power

or

The Kibble-Zurek mechanism is probably the dominant regulator of critical dynamics

since the power 0.096 is small.



