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The UA(1) puzzle

Origin:
Anomalous UA(1) not an exact symmetry of QCD yet may affect the
order of phase transition for Nf = 2 [Pisarski & Wilczek, 83].

In model QFT with same symmetries as QCD, it is not possible to
quantify the UA(1) effects in observables.

Need lattice studies with fermions having exact chiral/flavour
symmetry + reproduce exactly anomaly on the lattice.
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Why is it important?

mu,d << ΛQCD , chiral symmetry drives phase transition at µB → 0

The singular part of free energy should show critical scaling → hints of
criticality from lattice studies [BI-BNL collaboration, 09].
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Why is it important?

Criticality at µ = 0 changes on whether UA(1) is effectively restored
[Pelissetto & Vicari, 13, Nakayama & Ohtsuki, 14].

• O(4) critical exponents for UA(1) broken
• U(2)× U(2) if UA(1) effectively restored

Effects should be visible in higher order fluctuations measured in the
experiments [Karsch & Redlich, 11, Bielefeld-BNL-CCNU collaboration, 1701.04325]���������
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Why is it important?

Could affect the EoS relevant for anomalous hydrodynamics with
chiral imbalance?

Softening of η′ mass near freezeout? [Grahl & Rischke, 14,15]

Consequences for the critical end-point at finite µB?

Lattice QCD can answer such questions from first principles +
confirmation from Heavy-Ion experiments.

The microscopic constituents responsible for it may also be
responsible for characteristic T dependence of topological
susceptibility.
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The major issues with the lattice studies so far

Finite volume effects → ensure presence of topological objects in a
box.

Most studies done with lattice fermions with reasonably good remnant
of continuum chiral symmetry + explicitly broken UA(1) which is
restored in the continuum limit [S. Chandrasekharan, 96, H. Ohno et. al 12, V. Dick et. al., 15].

Studies done with chiral fermions are in a fixed topological sector+
small volume [JLQCD collaboration, 13].

Lattice cut-off effects need careful consideration [G. Cossu et. al, 14]

Sayantan Sharma CPOD, 2017, Stony Brook University Slide 7 of 24



The major issues with the lattice studies so far

Finite volume effects → ensure presence of topological objects in a
box.

Most studies done with lattice fermions with reasonably good remnant
of continuum chiral symmetry + explicitly broken UA(1) which is
restored in the continuum limit [S. Chandrasekharan, 96, H. Ohno et. al 12, V. Dick et. al., 15].

Studies done with chiral fermions are in a fixed topological sector+
small volume [JLQCD collaboration, 13].

Lattice cut-off effects need careful consideration [G. Cossu et. al, 14]

Sayantan Sharma CPOD, 2017, Stony Brook University Slide 7 of 24



The major issues with the lattice studies so far

Finite volume effects → ensure presence of topological objects in a
box.

Most studies done with lattice fermions with reasonably good remnant
of continuum chiral symmetry + explicitly broken UA(1) which is
restored in the continuum limit [S. Chandrasekharan, 96, H. Ohno et. al 12, V. Dick et. al., 15].

Studies done with chiral fermions are in a fixed topological sector+
small volume [JLQCD collaboration, 13].

Lattice cut-off effects need careful consideration [G. Cossu et. al, 14]

Sayantan Sharma CPOD, 2017, Stony Brook University Slide 7 of 24



The major issues with the lattice studies so far

Finite volume effects → ensure presence of topological objects in a
box.

Most studies done with lattice fermions with reasonably good remnant
of continuum chiral symmetry + explicitly broken UA(1) which is
restored in the continuum limit [S. Chandrasekharan, 96, H. Ohno et. al 12, V. Dick et. al., 15].

Studies done with chiral fermions are in a fixed topological sector+
small volume [JLQCD collaboration, 13].

Lattice cut-off effects need careful consideration [G. Cossu et. al, 14]

Sayantan Sharma CPOD, 2017, Stony Brook University Slide 7 of 24



Observables sensitive to UA(1) breaking..

Not an exact symmetry→ no order-parameter →

Important to look at all point correlation functions between axial

Atleast for the integrated 2 point correlators [Shuryak, 94]

χπ − χδ =

∫

d
4
x

[

〈iπ+(x)iπ−(0)〉 − 〈δ+(x)δ−(0)〉
]

Equivalently study ρ(λ,mf ) of the Dirac operator [Cohen, 95, Hatsuda & Lee, 95]

χπ − χδ
V→∞

→

∫

∞

0

dλ
4m2

f ρ(λ,mf )

(λ2 +m2
f
)2

, 〈ψ̄ψ〉
V→∞

→

∫

∞

0

dλ
2mf ρ(λ,mf )

(λ2 +m2
f
)

Chiral symmetry restored: limmf →0 limV→∞ ρ(0,mf ) → 0 ⇒ UA(1) restored.

Chiral symmetry restored +UA(1) broken if

lim
λ→0

ρ(λ,mf ) → δ(λ)mα
f , 1 < α < 2.
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Spectral density of Dirac operator at finite T

Very little known. Only recently there are interesting results
[Aoki, Fukaya & Taniguchi, 12].

Assuming ρ(λ,m) to be analytic in m2, λ, look at chiral Ward
identities of n-point function of scalar & pseudo-scalar currents.

ρ(λ,m → 0) ∼ λ3 ⇒ UA(1) breaking effects invisible in these sectors
for upto 6-point functions.

Look for non-analyticities + analytic rise in the infrared QCD Dirac
spectrum
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Numerical details

Möbius domain wall fermions on 5D hypercube with N = 32 sites
along each spatial 4-dim, N5 = 16 and Nτ = 8 sites along temporal
dim. We also have results with staggered (HISQ) fermions.

Volumes,V = N3a3 , Temperature, T = 1
Nτa

, a is the lattice spacing.

Box size: mπ V 1/3 > 4

2 light+1 heavy flavour

Input ms physical ≈ 100 MeV and ms/ml = 27, 12
⇒ mπ = 135, 200 MeV. [Columbia-BNL-LLNL, 13,14].

The sign function and chiral symmetry maintained as precise as 10−10.
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QCD Dirac spectrum at finite T

General features: Near zero mode peak +bulk.

No gap observed upto 1.2 Tc for physical quark mass
[ V. Dick et. al. in prep, also 1602.02197].
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General Characteristics

We fit to the ansatz: ρ(λ) = Aǫ
λ2+A

+ Bλγ.

Bulk rises linearly as λ near Tc .

No gap even when quark mass reduced!
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General Characteristics

The rise of the bulk is γ ∼ 2 → Still not consistent with λ3.

Infrared modes becomes rarer with a small peak.
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A closer look at the near-zero modes

The near-zero modes sensitive to the sea quark mass → sparse when
mπ heavier but the peak survives!

Falls by more than a third at 1.2Tc .
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Comparing eigenspectra for different lattice fermions

Exponent characterizing the bulk spectra of staggered quarks(HISQ)
consistent with domain wall fermions.

The near-zero peak start appearing for finest lattice spacings even with
staggered quarks → non-perturbative characteristic of QCD eigenvalue
spectrum

Suffer from strong finite volume effects [G. Cossu et. al, 13, A. Tomiya et. al, 15,16] due to
which there has been serious debate on it!
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Summary of eigenvalue spectrum at finite T
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Summary of eigenvalue spectrum at finite T
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Summary of eigenvalue spectrum at finite T
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Fate of UA(1) near Tc

Contribution to UA(1) breaking in 2-point correlation functions
mainly come from small eigenvalues.

First 50 eigenvalues produce most of the breaking obtained from
inversion of the Domain wall Dirac operator with good chiral
prroperties. [V. Dick, et. al, 1602.02197, Columbia-BNL-LLNL, 13,14].
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What are the constituents of the hot QCD medium?

At T = 0, anomaly effects related to instantons [ t’Hooft, 76].

Near chiral crossover transition Tc , a medium consisting of
interacting instantons can explain chiral symmetry breaking ⇒
Instanton Liquid Model [Shuryak, 82].

At T >> Tc , medium is like a dilute gas of instantons
[Gross, Pisarski & Yaffe, 81].

What is the medium made up of for Tc ≤ T ≤ 2Tc?
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Independent confirmation: Topological susceptibility

Topological susceptibility measurement at high T on the lattice suffers from
rare topological tunneling, lattice artifacts.

Going towards continuum limit difficult due to freezing of topology.

Fermionic observables
[L. Giusti, G. C. Rossi, M. Testa, 0402027, HotQCD 1205.3535]

shown to agree with standard definition
of χt =

∫

d4x〈F F̃ (x)F F̃ (0)〉 in the
continuum even with staggered quarks.
[ P. Petreczky, H-P Schadler, SS, 1606.03145].

Continuum extrapolated results now
available for QCD!
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Independent confirmation: Topological susceptibility
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[ F. Burger et. al, 1705.01847, Y. Taniguchi et. al., 1611.02413]

Fit ansatz: χ
1/4
t = AT−b.
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results with HISQ.
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More Diagnostics!

Since θ is tiny, F (θ) = 1
2χtθ

2
(

1 + b2θ
2 + ...

)

.
[L. D. Debbio, H. Panagopoulos, E. Vicari, 0407068]

Strong non-Gaussianity in higher order expansions. Hints about existence of
dyons? Hints observed in lattice studies [M. Ilgenfritz, M-Mueller Pruessker, et. al. 14, 15].
Evident also from the T -dependence of χt [ P. Petreczky, H-P Schadler, SS, 1606.03145].
New lattice techniques are being discussed to explore them.
[R. Larsen, E. Shuryak, 1703.02434].
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A closer look at near-zero modes
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Near-zero modes due to a dilute instanton gas?

Small residual interactions at 1.2Tc .

The dilute gas picture sets in QCD already at 1.5Tc [V. Dick et. al., 15].
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Summary

On large volume lattice we found that UA(1) broken for T ≤ 1.2Tc .

Infrared eigenvalues contribute dominantly to its breaking.

Consists of near-zero+tail of the bulk modes. The latter quite robust
insensitive to lattice cut-off effects.

Near-zero modes require a careful study.
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