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FIG. 1. Ratio of interacting to free correlation functions
measured at five quark masses (small circles), binned data ex-
trapolated to the physical pion mass (large circles), three-
parameter fits (solid lines), and the phenomenological results of
Ref. [4] (dot-dashed line).
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Here, m refers to the upper terms in brackets for scalar
and pseudoscalar mesons and the middle terms in brack-
ets for vector and axial vector mesons, and b refers to the
lower terms in brackets for baryon channels. In practice,
we always normalize the phenomenological R(x) by the
corresponding massless results Ro (x) ~x and Ro(x)
~ x . Note that although we have not included lattice
renormalization constants for nonconserved currents, they
will not affect the shape of the normalized ratio of corre-
lation functions, but only the value of the fitted parame-
ters. Also, since the results below are sensitive to the
presence of the continuum term in the fitting, it is clear
that the lattice calculation is simultaneously providing
short- and long-distance physics information.
In Fig. 1 we show the complete lattice data and the

three-parameter fit in the pseudoscalar meson (pion)
channel for each of five values of the bare quark mass.
The result at the physical pion mass is obtained by bin-
ning the lattice data in two-lattice-unit bins and extrapo-
lating the binned data with the results shown by the large
circles. The striking result in this channel is the extreme-
ly rapid rise in the correlation function ratio, necessitat-
ing a log plot, which arises from the strong attraction and
corresponding light pion mass. The lattice result agrees
qualitatively with Shuryak's phenomenological estimate
[4], denoted by the dot-dashed line, based on the value
g =(4go MeV)2, and the fact that the peak is propor-
tional to A.,/m, —f /mq explains the particularly large
quark mass dependence in this channel. Detailed treat-
ment of the extrapolation, error analysis of fitted parame-
ters, and lattice renormalization corrections will be de-
ferred to the longer paper [9], and we only show extrapo-
lated results and phenomenological fits for all other chan-
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FIG. 2. Extrapolated ratio of meson correlation functions
(closed circles) and fits (solid curves) as in Fig. 1. Dashed lines
denote phenomenological results [4] and dotted lines show the
interacting instanton approximation [5].

nels, where the quark mass dependence is much weaker.
Figure 2(a) displays the vector meson (rho) channel

result. As emphasized by Shuryak [4], the salient feature
in this channel is the fact that although the free correla-
tor falls 4 orders of magnitude between 0.3 and 1.S fm,
the ratio is nearly 1 over the whole range, and our lattice
result is consistent with his phenomenological analysis of
e+e even number z's, denoted by the dashed curve.
The result in the axial meson (A i) channel, shown in Fig.
2(b), is qualitatively similar to the phenomenological
analysis of r 3z decay [4] denoted by the dashed line,
although finite lattice eAects render it di%cult to repro-
duce the rising tail due to mixing with the pion. The re-
sult for the scalar meson channel, for which the extrapo-
lation was more problematic than any other, is shown in
Fig. 2(c). Note that in both the axial and scalar channels
Eq. (2) did not produce reasonable physical parameters
when fit to the data, so the solid curves are smooth curves
to guide the eye in these cases. For comparison, the pre-
dictions of the interacting instanton approximation [5] for
mesons using a Pauli-Villars cutoA Apv =130 MeV are
shown by dotted lines, and in each case are in qualitative
agreement with the lattice results. Comparison of calcu-
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X [det(iB+imf )] . (3.23)

Here we have denoted by dA; the measure in space
of collective coordinates of the ith instanton.
S; =8w /g (p; ) is the action corresponding to individual
instantons. S;„, describes the classical (gluonic) interac-
tion between instantons and anti-instantons. At large
distances it is known to be a dipole interaction (Callan
et al. , 1978), but at finite distances this quantity requires
a specific definition. Starting with Diakonov and Petrov
(1984), a set of trial functions of growing complexity was
used (Shuryak, 1988c). However, the most natural col-
lective coordinates for the instanton —anti-instanton
problem can be obtained by "descending down the val-
ley" (Shuryak, 1988d), solving the so-called streamline
equation (Yung, 1988). This was done for gauge fields in
Verbaarschot (1991), where one can find a detailed dis-
cussion of this interaction.
The last (and the most complicated) factor in (3.23) is

the so-called fermionic determinant, which describes

~ Recently this interaction has attracted much attention in
connection with possible baryon number violation by weak in-
teraction (see Khoze and Ringwald, 1991; Shuryak and Ver-
baarschot, 1992).

Lagrangian generated by a single instanton or anti-
instanton has an effective interaction like q fqf (or
R~L), but never gfgf (or Pfgf ). The Dirac structure
of the helicity-Qip interaction contributes only to scalar
and pseudoscalar correlators. Noting also the specific
Aavor-changing structure of this Lagrangian, we find that
the interaction has the following important properties:
(1) The first-order corrections in the 't Hooft effective

interaction are present in the scalar and pseudoscalar
correlators, but absent in the vector and axial ones.
(2) These corrections have the opposite sign for the

scalar and pseudoscalar channels.
(3) These corrections have the opposite sign for the iso-

spin 1 and 0 channels.
All three points are welcomed to reconcile the

disagreements in the previous section. The first point ac-
counts for the nature of the disagreement in the pseudos-
calar case, while preserving the good agreement for the
axial and vector cases. The last two points show how
this interaction has exactly the structure of the amplitudeE,which was demanded at the end of Sec. II to pro-
vide a qualitative explanation of the behavior of all four
spin-zero correlators. Unfortunately, one can use the
first-order results only at small distances, where the
instanton-induced efFects are small corrections to the per-
turbative correlation functions.
To go beyond the first-order efFects, one can numerical-

ly model an ensemble of interacting instantons, using a
partition function of the form

Z= III;[dA;exp( —S;)]exp(S;„,)IIf=i z
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FIG. 15. Ratio of the various correlation functions to that cor-
responding to the free-quark propagation vs distance xApz
(normalized to the Pauli-Villars Ap& parameter, roughly in fm).
The points correspond to the calculation in the IIA framework
(Shuryak, 1989a) for scalar (S), pseudoscalar (PS), vector (V),
and axial (A) channels with the flavor structure ud, us (closed
and open points, respectively). The dashed curves are the
three-parameter fit described in the text.

quark-induced interactions. It is evaluated by division
into two terms, that due to zero and nonzero modes. The
former can be written as the NXX matrix in the so-
called zero-mode subspace, where N is the number of in-
stantons (and anti-instantons) considered. Its deter-
minant is evaluated directly for each configuration,
which is equivalent to inclusion of all diagrams in the 't
Hooft interaction to ¹horder.
This system is somehow more complicated than the

traditional systems considered in statistical mechanics:
the fermion determinant induces a very nonlocal interac-
tion. Therefore in simulations one has to deal with about
20-60 instantons. The question of whether or not chiral
symmetry is broken becomes a matter of calculation,
similar to the question of whether a collection of atoms
behaves as a conductor or an insulator. The situation is
also complicated by the fact that the ensemble of instan-
tons is not "frozen" into a periodic structure, but
remains liquid-like. However, this problem still is enor-
mously simpler than lattice gauge theory. In fact, one
needs only about 10 parameters to describe field in the
volume 1 fm, instead of 10 or more used for the same
purpose in current lattice calculations. We also have
some evidence that these variables are in fact the main
ones (see below).
After this brief introduction, a sample of results is in

order. In Fig. 15 the I=1 mesonic correlation functions
presented in Shuryak (1989a, 1989b, 1989c, 1989d) are
shown, in the form of II;(x)/IIf„,(x). Qualitative behav-
ior of all correlators agrees well with our discussion. In
particular, there is strong attraction in the octet pseudos-
calar case, causing the curve to go up starting from rath-
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V-A => SU(Nf) breaking

E.Shuryak., Nucl. Phys. B238, (1989), 102 
random instantons

which chiral symmetry breaking is stronger?

P-S => U(1)a breaking
Which is much stronger!

attractive

repulsive

neutral
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While the squared masses give some hints about the
scale of q̄q interaction in these channels, much more de-
tailed information on that comes from studies of the
corresponding correlation functions. Theory and phe-
nomenology of those, first systematically reviewed in
[20], do indeed reveal very di↵erent x-dependence, de-
pending on the quantum number of J . Some chan-
nels are “strongly attractive”, with K(x) exceeding the
K0 ⇠ 1/x6 (corresponding to propagating massless quark
and antiquark). Some are “strongly repulsive”, while all
vector channels (⇢, !, �) are “near-free”, in the sense that
K(x)/K0(x) ⇡ 1 in a wide range. It is those splittings
of the correlation functions K(x) which we are going to
calculate and discuss in this work.

A wider issue related to splittings of these functions
is the spin-flavor structure of the nonperturbative e↵ects
in the QCD vacuum, leading to spontaneous breaking
of the SU(N

f

) and explicit breaking of the U(1)
a

sym-
metry. The former issue we will study focusing on the
difference between the vector and axial (isovector) cor-
relation functions, V � A for short. The latter one is
related with the splitting between the pseudoscalar and
scalar (isovector) correlation functions, P � S.

The V ± A combinations of the correlation functions
are especially valuable. First of all, they can be deduced
directly from experimental data, with good (few percent)
accuracy. The vector ones have the spectral densities di-
rectly measurable via reaction e+e� ! hadrons. The ax-
ial ones are amenable via weak decays, most prominently
of the reaction ⌧ ! ⌫

⌧

+hadrons. ALEPH collaboration
data [23, 24] remain the best one, used in both instanton
study [25] and recently in the lattice calculation Ref.[26].

From the theoretical point of view, the best for our
purposes is the difference V �A of the vector and axial
correlators. Due to chiral symmetry, pQCD diagrams
with any number of exchanged gluons contribute equally
to both of them, and are canceled in the di↵erence. What
remains are only the non-perturbative chiral symmetry
breaking e↵ects, which we focus on. We will specifically
use V �A combination of correlators below to determine
the key parameter of the instanton-dyon ensemble.

In Fig. 1 we show the V �A combination of correlators
deduced from experimental ALEPH results, the instan-
ton liquid calculation [25] (upper plot) as well as from the
recent lattice study [26] (lower plot). Unlike older stud-
ies of point-to-point correlators, this one is done with
dynamical quarks at physical mass, with proper contin-
uum extrapolation. As one can see, both the ALEPH
data and modern lattice do provide the correlation func-
tion with the accuracy of just a couple percents. Also
it is evident from those plots that the original sum rule
predictions [21] based on the operator product expansion
(OPE) are applicable only at very small distances.

The strongest splitting of the correlation function, be-
tween the isovector pseudoscalar (charged ~⇡) channel and

the scalar (charged ~�), reveals a very important feature
of the QCD vacuum/matter structure, namely its strong

inhomogeneity, but it reveals direct relation to underly-

We can also check the short distance behavior of the
correlation function in the instanton liquid. Instantons
generate the same d = 4 operator in the OPE but the
nature of the d = 6 operator is di↵erent. To leading
order in the semi-classical expansion there is no radia-
tively generated �

s

�q̄q�2 log(x2)x6 operator, but instead
there is a non-singular �q̄q�2x6 term. Such terms are
dropped in standard OPE, but they are present in the
correlation functions. The numerical value of this term
is (x/0.64 fm)2, close to the data and the OPE term.

4. We shall now focus our attention on the V + A
correlation function. The unique feature of this function
is that the full correlator is close to the free field result
for distances as large as 1 fm. This phenomenon was
referred to as “super-duality” in [6].

The instanton model reproduces this feature of the
V + A correlator. We also notice that for small x the
deviation of the correlator in the instanton model from
free field behavior is small compared to the perturbative
O(�

s

/⇡) correction. This opens the possibility of preci-
sion studies of the pQCD contribution. But before we do
so, let us compare the correlation functions to the OPE
prediction

⇧
V

(x) + ⇧
A

(x)

2⇧0(x)
= 1 +

�
s

⇡
� 1

384
�g2(Ga

µ⌫

)2�x4

�2⇡3

81
�

s

(x)�q̄q� log(x2)x6 + . . . (4)

Note that the perturbative correction is attractive, while
the power corrections of dimension d = 4 and d = 6
are repulsive. Direct instantons also induce an O(x4)

correction 1� ⇡

2

12

�
N

V

�
x4 + . . . [14–16], which is consistent

with the OPE because in a dilute instanton liquid we
have �g2G2� = 32⇡2(N/V ). This term can indeed be seen
in the instanton calculation and causes the correlator to
drop below 1 at small x.

It is possible to extract the value of ⇤
QCD

together
with the power corrections from the data. Because the
dimension 6 operator is relatively small we have fixed it
from a joint fit with the V � A correlator. We find

⇧
V

(x) + ⇧
A

(x)

2⇧0(x)
= 1 +

�
s

(x)

⇡
�

� x

1.52 fm

�4

�
� x

0.85 fm

�6
+ . . . . (5)

The value of �
s

(m
⌧

) � 0.35 [17] is consistent with other
determinations [7], but the value of the gluon conden-
sate term is smaller than the standard SVZ value [1].
In fact, the data do not show any kind of “dip” and as
soon as the d = 4 power correction becomes comparable
to the perturbative correction it is in dramatic disagree-
ment with the data. Unfortunately, it will be hard to
improve on this situation even if high precision data that
cover a larger range of invariant masses in the vector
channel become available. Within the range of validity
of the OPE in the V +A channel, x <⇠ 0.3 fm, the power

corrections are always small as compared to perturbative
corrections. This makes it doubtful that one will ever be
able to extract the value of the gluon condensate.
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FIG. 3. Same as in Fig. 2, but with the �V (x) � �A(x)
correlator plotted on a logarithmic scale and �V (x) + �A(x)
shown in more detail.

5. Finally, we address the purely perturbative con-
tribution to the V + A correlation function, using the
instanton calculation as a representation of the non-
perturbative part of the correlation function. This is
supported by the fact that instantons provide a very ac-
curate description of the V � A correlator which is free
of perturbative contributions. The di↵erence between
the full correlation function and the instanton calcula-
tion is shown by the squares in Fig. 4. For comparison,
we also show the full correlation function with only the
free field behavior subtracted. At short distance, there
is no di↵erence between the two curves, and both fol-
low the first order perturbative result �

s

(x)/⇡. At larger
distances ⇧

V

(x) + ⇧
A

(x) � 2⇧0(x) starts to drop, but
the non-perturbatively subtracted correlator continues to
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FIG. 12. Lattice result for RV �A after the chiral and continuum extrapolations. Data in each bin

are extrapolated assuming (18). Bin size is larger in the short-distance region |x| � 0.4 fm (blue

crosses) than others (red squares) as the number of lattice points are fewer. The experimental result

(band) and the predictions of OPE including up to dimension-4 (dotted curve) and dimension-6

(dashed curve) operators are also plotted.

and dimension-6 (dashed curve) operators. The OPE ROPE
V �A(x) of the V � A channel is

written as

ROPE
V �A(x) = ��2

3
mq�q̄q�x4 +

�s�3

9
�q̄q�2 ln(µ0x)2x6 � f 2

�m3
��2

48
|x|5K1(m�|x|) + O(m2

q). (19)

Here, only the leading order of the strong coupling constant �s is shown for the first and

second terms. The first term is calculated by the Fourier transform of the OPE in the

momentum space given in [31]. The second term is estimated using the vacuum saturation

approximation with �q̄q�2 [39]. Before the normalization of (13), this term is logarithmic in

x with an unknown parameter µ0 as a result of the Fourier transform Q�4 ! � 1
16�2 ln(µ0x)2.

Since the first two terms on the right hand side of (19) correspond to the OPE including

the longitudinal component of the axial-vector correlators, we subtract the contribution of

the pion pole by the third term. In the evaluation of ROPE
V �A(x) shown in Figure 12, we set

nominal values f� = 130 MeV, m� = 140 MeV, and the scheme-dependent parameters at

20

FIG. 1: (Color online) V � A correlation function as a func-
tion of the Euclidean distance x. The upper figure, from [25],
compares the ALEPH data (region between two dashed lines)
to the instanton liquid calculation (closed squares) and the
OPE [21] (open rhombs). The lower plot, from [26], com-
pares the same ALEPH data (shaded region) with versions
of the OPE (lines) and to extrapolated results of their lattice
simulations (red points).

ing topology of the gauge fields. Unfortunately it is not
so accurately known.

At small x the non-perturbative corrections to corre-
lators – the splittings – are approximately given by ex-
pectation values of < J2 >, or the fluctuations of the
currents in the vacuum. In a bit more general terms,
those are related to VEVs of various 4-fermion oper-
ators. Strong inhomogeneity of vacuum configurations
means that those fluctuate from point to point by orders
of magnitude. “Strong” feature can also be expressed as
a statement that some VEVs are large

< O4�fermion

> � < q̄q >2

compared to the quark condensate squared in the r.h.s.
. There are plenty of the 4-fermion operators one can
construct out of quark fields, and one may ask which
ones show this feature in the most pronounced way. The
studies, in the instanton framework [4] and in lattice sim-
ulations [27] concluded that it is (parts of) the topology-
induced ’t Hooft e↵ective Lagrangian. For two light fla-

V-A is the most accurately known combination 
 reproduced by instanton liquid and lattice
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While the squared masses give some hints about the
scale of q̄q interaction in these channels, much more de-
tailed information on that comes from studies of the
corresponding correlation functions. Theory and phe-
nomenology of those, first systematically reviewed in
[20], do indeed reveal very di↵erent x-dependence, de-
pending on the quantum number of J . Some chan-
nels are “strongly attractive”, with K(x) exceeding the
K0 ⇠ 1/x6 (corresponding to propagating massless quark
and antiquark). Some are “strongly repulsive”, while all
vector channels (⇢, !, �) are “near-free”, in the sense that
K(x)/K0(x) ⇡ 1 in a wide range. It is those splittings
of the correlation functions K(x) which we are going to
calculate and discuss in this work.

A wider issue related to splittings of these functions
is the spin-flavor structure of the nonperturbative e↵ects
in the QCD vacuum, leading to spontaneous breaking
of the SU(N

f

) and explicit breaking of the U(1)
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sym-
metry. The former issue we will study focusing on the
difference between the vector and axial (isovector) cor-
relation functions, V � A for short. The latter one is
related with the splitting between the pseudoscalar and
scalar (isovector) correlation functions, P � S.

The V ± A combinations of the correlation functions
are especially valuable. First of all, they can be deduced
directly from experimental data, with good (few percent)
accuracy. The vector ones have the spectral densities di-
rectly measurable via reaction e+e� ! hadrons. The ax-
ial ones are amenable via weak decays, most prominently
of the reaction ⌧ ! ⌫

⌧

+hadrons. ALEPH collaboration
data [23, 24] remain the best one, used in both instanton
study [25] and recently in the lattice calculation Ref.[26].

From the theoretical point of view, the best for our
purposes is the difference V �A of the vector and axial
correlators. Due to chiral symmetry, pQCD diagrams
with any number of exchanged gluons contribute equally
to both of them, and are canceled in the di↵erence. What
remains are only the non-perturbative chiral symmetry
breaking e↵ects, which we focus on. We will specifically
use V �A combination of correlators below to determine
the key parameter of the instanton-dyon ensemble.

In Fig. 1 we show the V �A combination of correlators
deduced from experimental ALEPH results, the instan-
ton liquid calculation [25] (upper plot) as well as from the
recent lattice study [26] (lower plot). Unlike older stud-
ies of point-to-point correlators, this one is done with
dynamical quarks at physical mass, with proper contin-
uum extrapolation. As one can see, both the ALEPH
data and modern lattice do provide the correlation func-
tion with the accuracy of just a couple percents. Also
it is evident from those plots that the original sum rule
predictions [21] based on the operator product expansion
(OPE) are applicable only at very small distances.

The strongest splitting of the correlation function, be-
tween the isovector pseudoscalar (charged ~⇡) channel and

the scalar (charged ~�), reveals a very important feature
of the QCD vacuum/matter structure, namely its strong

inhomogeneity, but it reveals direct relation to underly-

We can also check the short distance behavior of the
correlation function in the instanton liquid. Instantons
generate the same d = 4 operator in the OPE but the
nature of the d = 6 operator is di↵erent. To leading
order in the semi-classical expansion there is no radia-
tively generated �

s

�q̄q�2 log(x2)x6 operator, but instead
there is a non-singular �q̄q�2x6 term. Such terms are
dropped in standard OPE, but they are present in the
correlation functions. The numerical value of this term
is (x/0.64 fm)2, close to the data and the OPE term.

4. We shall now focus our attention on the V + A
correlation function. The unique feature of this function
is that the full correlator is close to the free field result
for distances as large as 1 fm. This phenomenon was
referred to as “super-duality” in [6].

The instanton model reproduces this feature of the
V + A correlator. We also notice that for small x the
deviation of the correlator in the instanton model from
free field behavior is small compared to the perturbative
O(�

s

/⇡) correction. This opens the possibility of preci-
sion studies of the pQCD contribution. But before we do
so, let us compare the correlation functions to the OPE
prediction
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Note that the perturbative correction is attractive, while
the power corrections of dimension d = 4 and d = 6
are repulsive. Direct instantons also induce an O(x4)
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with the OPE because in a dilute instanton liquid we
have �g2G2� = 32⇡2(N/V ). This term can indeed be seen
in the instanton calculation and causes the correlator to
drop below 1 at small x.

It is possible to extract the value of ⇤
QCD

together
with the power corrections from the data. Because the
dimension 6 operator is relatively small we have fixed it
from a joint fit with the V � A correlator. We find
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The value of �
s

(m
⌧

) � 0.35 [17] is consistent with other
determinations [7], but the value of the gluon conden-
sate term is smaller than the standard SVZ value [1].
In fact, the data do not show any kind of “dip” and as
soon as the d = 4 power correction becomes comparable
to the perturbative correction it is in dramatic disagree-
ment with the data. Unfortunately, it will be hard to
improve on this situation even if high precision data that
cover a larger range of invariant masses in the vector
channel become available. Within the range of validity
of the OPE in the V +A channel, x <⇠ 0.3 fm, the power

corrections are always small as compared to perturbative
corrections. This makes it doubtful that one will ever be
able to extract the value of the gluon condensate.
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FIG. 3. Same as in Fig. 2, but with the �V (x) � �A(x)
correlator plotted on a logarithmic scale and �V (x) + �A(x)
shown in more detail.

5. Finally, we address the purely perturbative con-
tribution to the V + A correlation function, using the
instanton calculation as a representation of the non-
perturbative part of the correlation function. This is
supported by the fact that instantons provide a very ac-
curate description of the V � A correlator which is free
of perturbative contributions. The di↵erence between
the full correlation function and the instanton calcula-
tion is shown by the squares in Fig. 4. For comparison,
we also show the full correlation function with only the
free field behavior subtracted. At short distance, there
is no di↵erence between the two curves, and both fol-
low the first order perturbative result �

s

(x)/⇡. At larger
distances ⇧

V

(x) + ⇧
A

(x) � 2⇧0(x) starts to drop, but
the non-perturbatively subtracted correlator continues to

3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

R V
−A

|x| [fm]

ALEPH
δx = 0.02 fm
δx = 0.04 fm

OPE to 4-dim
OPE to 6-dim

FIG. 12. Lattice result for RV �A after the chiral and continuum extrapolations. Data in each bin

are extrapolated assuming (18). Bin size is larger in the short-distance region |x| � 0.4 fm (blue

crosses) than others (red squares) as the number of lattice points are fewer. The experimental result

(band) and the predictions of OPE including up to dimension-4 (dotted curve) and dimension-6

(dashed curve) operators are also plotted.

and dimension-6 (dashed curve) operators. The OPE ROPE
V �A(x) of the V � A channel is

written as

ROPE
V �A(x) = ��2

3
mq�q̄q�x4 +

�s�3

9
�q̄q�2 ln(µ0x)2x6 � f 2

�m3
��2

48
|x|5K1(m�|x|) + O(m2

q). (19)

Here, only the leading order of the strong coupling constant �s is shown for the first and

second terms. The first term is calculated by the Fourier transform of the OPE in the

momentum space given in [31]. The second term is estimated using the vacuum saturation

approximation with �q̄q�2 [39]. Before the normalization of (13), this term is logarithmic in

x with an unknown parameter µ0 as a result of the Fourier transform Q�4 ! � 1
16�2 ln(µ0x)2.

Since the first two terms on the right hand side of (19) correspond to the OPE including

the longitudinal component of the axial-vector correlators, we subtract the contribution of

the pion pole by the third term. In the evaluation of ROPE
V �A(x) shown in Figure 12, we set

nominal values f� = 130 MeV, m� = 140 MeV, and the scheme-dependent parameters at

20

FIG. 1: (Color online) V � A correlation function as a func-
tion of the Euclidean distance x. The upper figure, from [25],
compares the ALEPH data (region between two dashed lines)
to the instanton liquid calculation (closed squares) and the
OPE [21] (open rhombs). The lower plot, from [26], com-
pares the same ALEPH data (shaded region) with versions
of the OPE (lines) and to extrapolated results of their lattice
simulations (red points).

ing topology of the gauge fields. Unfortunately it is not
so accurately known.

At small x the non-perturbative corrections to corre-
lators – the splittings – are approximately given by ex-
pectation values of < J2 >, or the fluctuations of the
currents in the vacuum. In a bit more general terms,
those are related to VEVs of various 4-fermion oper-
ators. Strong inhomogeneity of vacuum configurations
means that those fluctuate from point to point by orders
of magnitude. “Strong” feature can also be expressed as
a statement that some VEVs are large

< O4�fermion

> � < q̄q >2

compared to the quark condensate squared in the r.h.s.
. There are plenty of the 4-fermion operators one can
construct out of quark fields, and one may ask which
ones show this feature in the most pronounced way. The
studies, in the instanton framework [4] and in lattice sim-
ulations [27] concluded that it is (parts of) the topology-
induced ’t Hooft e↵ective Lagrangian. For two light fla-
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and thus all dyons have the same color orientation; and
(ii) “random breaking”, in which all dyons are rotated

randomly by independent SU(3) matrices.
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Hadronic Correlation Functions in the Random Instanton-dyon Ensemble
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It is known since 1980’s that the instanton-induced ’t Hooft e↵ective Lagrangian not only can
solve the so called U(1)a problem, by making the ⌘0 meson heavy etc, but it can also lead to chiral
symmetry breaking. In 1990’s it was demonstrated that, taken to higher orders, this Lagrangian
correctly reproduces e↵ective forces in a large set of hadronic channels, mesonic and baryonic ones.
Recent progress in understanding gauge topology at finite temperatures is related with the so called
instanton-dyons, the constituents of the instantons. Some of them, called L-dyons, possess the anti-
periodic fermionic zero modes, and thus form a new version of the ’t Hooft e↵ective Lagrangian. This
paper is our first study of a wide set of hadronic correlation function. We found that, at the lowest
temperatures at which this approach is expected to be applicable, those may be well compatible
with what is known about them based on phenomenological and lattice studies, provided L and M
type dyons are strongly correlated.

I. INTRODUCTION

A. Instanton-dyons

Instantons are the 4-d topological solitons of the (Eu-
clidean) gauge theory, discovered by Polyakov and col-
laborators [1]. The so called Instanton Liquid Model
(ILM) has been proposed in [2]. Its main original appli-
cation was related with explanation of chiral symmetry
breaking, via collectivization of the so called Zero Mode
Zone (or ZMZ for short). Another way to explain it is to
state that the hypothetical 4-fermion interaction of the
Nambu-Iona-Lasinio model [3] is in fact the instanton-
induced ’t Hooft Lagrangian. One may compare its two
phenomenological parameters – the mean instanton size
⇢̄ ⇡ 1/3 fm and the total instanton-antiinstanton den-
sity n ⇡ 1 fm�4 – to two parameters of the NJL model,
the coupling constant G and the cuto↵ ⇤. Of course,
the ’t Hooft vertex does more than the NJL operator: in
particular, it knows about chiral anomaly and correctly
breaks the U(1)

A

symmetry. It also has a natural form
factor, allowing to calculate diagrams of any order.

Further development, of the Interacting Instanton Liq-
uid Model (IILM) in 1990’s has basically included the ’t
Hooft Lagrangian to all orders. The resulting theory was
shown to reproduce well not only properties associated
with the chiral symmetry breaking, the pions and their
interactions, but also the correlation functions in such
channels as vector and axial mesons, octet and decuplet
baryons, and even glueballs, for a review see [4]. Among
shortcomings of this theory is its inability to describe
confinement.

The deconfinement order parameter, being nonzero at
T > T

c

, is the so called Polyakov line. Its vacuum ex-
pectation value < P (T ) > 6= 0 has been derived in mul-
tiple lattice works. It is interpreted as the appearance
of the nonzero “holonomy field” < A4(T ) > 6= 0. Mod-
ification of the instanton solution to such environment
has lead to the discovery of the KvBLL caloron solution
[5, 6] and realization that instantons can be disassem-
bled into constituents, now called instanton-monopoles

or instanton-dyons. They are allowed to have non-integer
topological charge because they are connected only by
(invisible) Dirac strings. Since these objects have nonzero
electric and magnetic charges and source Abelian (diag-
onal) massless gluons, the corresponding ensemble is an
“instanton-dyon plasma”, with long-range Coulomb-like
forces between constituents.

The first application of the instanton-dyons were made
soon after their discovery in the context of supersymmet-
ric gluodynamics [7]. This paper solved a puzzling mis-
match of the value of the gluino condensate, between dif-
ferent answers obtained in various approaches. Diakonov
and collaborators (for review see [8] ) emphasized that,
unlike the (topologically protected) instantons, the dyons
are charged and thus interact directly with the Polyakov
line. They suggested that since such dyon (anti-dyon)
ensemble become denser at low temperatures, their back
reaction may overcome the perturbative potential and
drive it to its confining value, < P >! 0. A semi-
classical confining regime has been defined by Poppitz et
al [9, 10] in a carefully devised setting of softly broken su-
persymmetric models. While the setting includes a com-
pactification on a small circle, with weak coupling and
an exponentially small density of dyons, the minimum at
the confining holonomy value is induced by the repulsive
interaction in the dyon-antidyon molecules (called bions
by these authors).

Recent progress to be discussed below is related to
studies of the instanton-dyon ensembles. One series of
papers were devoted to high-density phase and mean field
approximation [11–15]. Our e↵orts were so far focused
on the direct numerical simulation of the dyon ensem-
bles [16–19] . These works had reproduced the decon-
finement and chiral restoration phase transitions, both
in pure gauge (SU(2)) theory and in a QCD-like setting
(2 colors and 2 light flavors). They also show strong
modification of both transitions due to unusual quark
periodicity phases [19].

Although in this paper we will be using SU(3) color
group, for simplicity let us start with the simplest case of
the SU(2). In the latter case there are only two selfdual
(L and M) and two anti-selfdual (L̄ and M̄) instanton-
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Further development, of the Interacting Instanton Liq-
uid Model (IILM) in 1990’s has basically included the ’t
Hooft Lagrangian to all orders. The resulting theory was
shown to reproduce well not only properties associated
with the chiral symmetry breaking, the pions and their
interactions, but also the correlation functions in such
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baryons, and even glueballs, for a review see [4]. Among
shortcomings of this theory is its inability to describe
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of the nonzero “holonomy field” < A4(T ) > 6= 0. Mod-
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topological charge because they are connected only by
(invisible) Dirac strings. Since these objects have nonzero
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onal) massless gluons, the corresponding ensemble is an
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forces between constituents.

The first application of the instanton-dyons were made
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ric gluodynamics [7]. This paper solved a puzzling mis-
match of the value of the gluino condensate, between dif-
ferent answers obtained in various approaches. Diakonov
and collaborators (for review see [8] ) emphasized that,
unlike the (topologically protected) instantons, the dyons
are charged and thus interact directly with the Polyakov
line. They suggested that since such dyon (anti-dyon)
ensemble become denser at low temperatures, their back
reaction may overcome the perturbative potential and
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Applicability limits of the instanton-dyon theory:
T
max

⇡ 400MeV : < P (T > T
max

) >⇡ 1

Tmin ⇡ 100MeV : S(T < Tmin) < 3 too small

Does this theory at its lower range 
reproduce known hadronic phenomenology?

dilute gas of instantons as seen in on the lattice in  �top

Note that it coincides with the ranges studied in heavy ion collisions
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the parameter r
LM

, the typical distance from the L dyon
to the M dyons. By varying it one finds very di↵erent
magnitude of the correlation functions. Therefore, using
this sensitivity we can tune the value of this parameter
to correspond to the known vacuum value of the V � A
correlator, see Fig. 7. The used value for the fit were
r12 = 0.2.

FIG. 7: (Color online) The normalized vector minus axial
vector di↵erence (V (x)�A(x))/(2K0(x)) channels versus the
distance x (fm). The narrow shadowed region corresponds to
ALEPH data, the red and blue dots correspond to the lattice
data [26], for two lattice spacings indicated on the plot. Our
results for r12 = 0.2 are shown by (black) •).

We see that the fit works will up to distance about
0.5 fm, but after this overshoots the experimental and
lattice data at |x| > 0.5 fm. In to the latter region one
also observes several unphysical e↵ects, in particular the
scalar correlator gets negative S(x) < 0, see Fig. 7, in
contradiction to spectral decomposition which require all
diagonal correlation functions to be strictly positive.

These abnormal phenomena in fact has been observed
long before, in random instanton liquid model (RILM)
and later in quenched QCD [22]. Note that both of these
approaches lack the fermionic determinant in the mea-
sure, and thus lack the most critical back reaction of
quarks on the topological ensemble. Arbitrary opera-
tions like “quenching” break connections between these
ensembles and quantum field theory foundations, so the
correlator positivity and other general features of QFTs
can and are violated.

It has been later shown (see review Schafer:1996wv)
that in the so called interacting instanton liquid model
(IILM) – which includes the fermionic determinant in the
measure – these abnormal phenomena disappear. And
they, of course, also are not present in unquenched lat-
tice simulations with the dynamical quarks. So, although
we have not yet done simulations with fully interacting
(unquenched) ensemble fo SU(3) instanton-dyons, we are
confident that in this case these abnormalities would dis-
appear as well.

Now we return to Fig. 8 in which the correlations func-
tions are shown for all four channels under consideration,
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FIG. 8: (Color online) The colored points connected by lines
are our results for four channels, for r12 = 0.2. Top to bot-
tom: Pseudoscalar (Brown) ⇤, Vector (Green) ⇧ , Axial vector
(Red) 4, and Scalar (Blue) •. The individual (black) points
without lines are lattice data from [22], their symbols are the
same as for our data.

P, V, A, S from top to bottom. One can clearly see, that
for small distances x < 1/3 fm all of them are in a good
approximation identical. We further remind that their
value in this region, equal to 1 in our normalization, cor-
responds to free propagation of the massless quark and
antiquark.

At larger distances in Fig.8 our simulations for the four
channels display clear splitting pattern, which is nearly
identical to what was first observed in RILM and then on
the lattice in 1990’s. The lines go upward correspond to
attractive channels P, V and those going downward show
repulsion in the A, S channels. For comparison we also
show in this figure the results from [22], shown by simi-
lar symbols as ours but without connecting lines. Over-
all our results are reasonably well consistent with these
lattice data. On a quantitative level one finds certain dif-
ferences: e.g. the splitting of our pseudoscaler is slightly
weaker than on the lattice. All these di↵erences are how-
ever completely understandable and are due to di↵erent
values of the quark masses in our ensemble and on the
lattice.

Last subject we would like to discuss for the mesonic
correlators is how they change as the temperature
increases. These changes are supposed to be caused by
(at least) the following e↵ects:
(i) the VEV of the Polyakov line moves toward trivial
value 1, and thus the holonomy parameter ⌫ goes
towards 0;
(ii) the e↵ective coupling runs to smaller values, the
action of the dyons grow and their density decreases;
(iii) the size of the Matsubara box decreases

We implement only the first two modifications, ignor-
ing the last kinematical one and keeping (for illustration
purposes) the same box size. The results of the calcula-

Yes, it can be reproduced by the dyons

PS

V
A
S



But with a heavy (and very non-trivial) price:
L and M1,M2 dons must be well correlated,

To make the fermonic zero modes well localized

7

percent of the volume [2] – the ensemble of the instanton-
dyons at T < T

c

is in fact rather dense.
Finally, we discuss the fermionic zero mode for a

KvBLL caloron at nonzero holonomy worked out by van
Baal and collaborators [28], using general ADHM and
Nahm construction. That resulted in very complicated
expressions which we do not to copy here. The e↵ect we
are after takes into account mutual influence of the fields
of L and M instanton-dyons, as a function of their rel-
ative distance, related to the “caloron size” parameter ⇢
via

r
LM

= |~r
L

� ~r
M

| = ⇡⇢2T (13)
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FIG. 5: (Color online) The time dependence of the zero
mode densities, at r = 0, for the SU(2) caloron at confining
holonomy v = v̄ = ⇡. The lowest (black dashed) curve is at
relative distance 1, the next (blue solid) is 0.5, then (red dots)
0.2 and (brown dash-dotted) one 0.1. The time and distances
are in units such that � = 1/T = 1.

The results are shown in Fig. 5: one can see that
if the distance between the dyons is as large as 1 (the
lowest black dashed curve), the time dependence is rather
mild, resembling the infinite distance (single dyon) case
discussed above, in which there is no t-dependence at all.
But, as L and M are moved closer to each other, their
interference deform the zero mode to be well localized.
Indeed, close L � M dyon pair is a small dipole, with
electric and magnetic fields canceling outside. So the
fermionic zero mode get strongly localized in between
them.

The density of the zero modes can be written in a nice
form (see e.g. (11) of [28])

 ̂a

z

(x)+ ̂b

z

(x) = � 1

(2⇡)2
@2

µ

f̂ab

x

(z, z) (14)

where the r.h.s. is the Green function of certain equation
in Nahm variable z.

A. The gauge factors of the zero-modes

Since we treat the dyons as individual object and don’t
include overlap e↵ects, the shape of the dyon is in its

basic principle am SU(2) object. Higher order groups
are obtained my taking the SU(2) object and injecting
it into a higher group, which in this case is the SU(3).

To have more than one dyon in the same gauge, the
hedgehog gauge dyon is rotated into a specific direction
in color space. As in earlier work we choose to rotate
the dyons into the ⌧3 direction. In order to do this we
first rotate all directions by an angle of � around the
⌧3, followed by a rotation of ✓ or ⇡ � ✓ for dyons and
antidyons around the ⌧2 direction, putting the direction
along the z � axis corresponding to the ⌧3 axis. Since
any rotation around the z � axis in the xy plane will be
invariant, we have a free rotation, corresponding to the
U(1) rotation. This angle sets the angle of the core and is
important when dyons overlap each other. We therefore
use the time coordinate for this rotation.

IV. THE SETTINGS

In our previous simulations [17, 18] in the partition
function the classical and one loop interactions of all dyon
pair channels were included. The color group was SU(2),
and the 3-d manifold on which simulation was done was
the 3d sphere S3.

The instanton-dyons we use in this paper are embed-
ded in SU(3) color group. It has L, M1, M2 and their
anti-solitons, 6 species in total . The 4-d manifold is the
standard periodic Matsubara box, with variable space
and time dimensions. The number of the dyons in the
simulation we keep constant, N

i

= 100, where i can be
L or L̄.

Since we only consider antiperiodic (fermionic) quarks,
only the L, L̄ dyons have quark zero modes. Thus the
total basis of the zero mode zone is N

L

+N
L̄

= 200 states.
The propagation of quarks from one object to another
is done via the “hopping matrix” T

ij

, in this case the
matrix of 200 ⇥ 200 size. Other dyons M

i

only enter via
their correlation/overlaps with L, L̄, which we describe
approximately via the parameter r

LM

as detailed below.
The temperature has been set by the size of the box in

temporal direction, which was chosen to be 2fm, while
the size of spatial directions was used to control the den-
sity. The density was found by fitting to experimental
data as shown in section V.

The full zero-mode in SU(2) and SU(3) are known,
but it is a huge expression which, even after long simpli-
fications in Mathematica, is not viable to write in rea-
sonably compact form. since its specific form requires
derivatives that makes it extremely long. We have there-
fore generated numerically a set of graphs for their den-
sity distribution in space-time x and parameterized those
approximately.

The zero-mode is a function of position x, holonomy ⌫
and distance to the M dyon r

LM

. We were interested in
the shape for this at ⌫ = 1/3 and for distances r

LM

< 2
for which the approximation works reasonably fine.
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FIG. 5: (Color online) The time dependence of the zero
mode densities, at r = 0, for the SU(2) caloron at confining
holonomy v = v̄ = ⇡. The lowest (black dashed) curve is at
relative distance 1, the next (blue solid) is 0.5, then (red dots)
0.2 and (brown dash-dotted) one 0.1. The time and distances
are in units such that � = 1/T = 1.

The results are shown in Fig. 5: one can see that
if the distance between the dyons is as large as 1 (the
lowest black dashed curve), the time dependence is rather
mild, resembling the infinite distance (single dyon) case
discussed above, in which there is no t-dependence at all.
But, as L and M are moved closer to each other, their
interference deform the zero mode to be well localized.
Indeed, close L � M dyon pair is a small dipole, with
electric and magnetic fields canceling outside. So the
fermionic zero mode get strongly localized in between
them.

The density of the zero modes can be written in a nice
form (see e.g. (11) of [28])
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where the r.h.s. is the Green function of certain equation
in Nahm variable z.

A. The gauge factors of the zero-modes

Since we treat the dyons as individual object and don’t
include overlap e↵ects, the shape of the dyon is in its

basic principle am SU(2) object. Higher order groups
are obtained my taking the SU(2) object and injecting
it into a higher group, which in this case is the SU(3).

To have more than one dyon in the same gauge, the
hedgehog gauge dyon is rotated into a specific direction
in color space. As in earlier work we choose to rotate
the dyons into the ⌧3 direction. In order to do this we
first rotate all directions by an angle of � around the
⌧3, followed by a rotation of ✓ or ⇡ � ✓ for dyons and
antidyons around the ⌧2 direction, putting the direction
along the z � axis corresponding to the ⌧3 axis. Since
any rotation around the z � axis in the xy plane will be
invariant, we have a free rotation, corresponding to the
U(1) rotation. This angle sets the angle of the core and is
important when dyons overlap each other. We therefore
use the time coordinate for this rotation.

IV. THE SETTINGS

In our previous simulations [17, 18] in the partition
function the classical and one loop interactions of all dyon
pair channels were included. The color group was SU(2),
and the 3-d manifold on which simulation was done was
the 3d sphere S3.

The instanton-dyons we use in this paper are embed-
ded in SU(3) color group. It has L, M1, M2 and their
anti-solitons, 6 species in total . The 4-d manifold is the
standard periodic Matsubara box, with variable space
and time dimensions. The number of the dyons in the
simulation we keep constant, N

i

= 100, where i can be
L or L̄.

Since we only consider antiperiodic (fermionic) quarks,
only the L, L̄ dyons have quark zero modes. Thus the
total basis of the zero mode zone is N

L

+N
L̄

= 200 states.
The propagation of quarks from one object to another
is done via the “hopping matrix” T

ij

, in this case the
matrix of 200 ⇥ 200 size. Other dyons M

i

only enter via
their correlation/overlaps with L, L̄, which we describe
approximately via the parameter r

LM

as detailed below.
The temperature has been set by the size of the box in

temporal direction, which was chosen to be 2fm, while
the size of spatial directions was used to control the den-
sity. The density was found by fitting to experimental
data as shown in section V.

The full zero-mode in SU(2) and SU(3) are known,
but it is a huge expression which, even after long simpli-
fications in Mathematica, is not viable to write in rea-
sonably compact form. since its specific form requires
derivatives that makes it extremely long. We have there-
fore generated numerically a set of graphs for their den-
sity distribution in space-time x and parameterized those
approximately.

The zero-mode is a function of position x, holonomy ⌫
and distance to the M dyon r

LM

. We were interested in
the shape for this at ⌫ = 1/3 and for distances r

LM

< 2
for which the approximation works reasonably fine.



P,V,A,S point-to-point correlation functions 
from random instanton-dyon ensemble
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the parameter r
LM

, the typical distance from the L dyon
to the M dyons. By varying it one finds very di↵erent
magnitude of the correlation functions. Therefore, using
this sensitivity we can tune the value of this parameter
to correspond to the known vacuum value of the V � A
correlator, see Fig. 7. The used value for the fit were
r12 = 0.2.

FIG. 7: (Color online) The normalized vector minus axial
vector di↵erence (V (x)�A(x))/(2K0(x)) channels versus the
distance x (fm). The narrow shadowed region corresponds to
ALEPH data, the red and blue dots correspond to the lattice
data [26], for two lattice spacings indicated on the plot. Our
results for r12 = 0.2 are shown by (black) •).

We see that the fit works will up to distance about
0.5 fm, but after this overshoots the experimental and
lattice data at |x| > 0.5 fm. In to the latter region one
also observes several unphysical e↵ects, in particular the
scalar correlator gets negative S(x) < 0, see Fig. 7, in
contradiction to spectral decomposition which require all
diagonal correlation functions to be strictly positive.

These abnormal phenomena in fact has been observed
long before, in random instanton liquid model (RILM)
and later in quenched QCD [22]. Note that both of these
approaches lack the fermionic determinant in the mea-
sure, and thus lack the most critical back reaction of
quarks on the topological ensemble. Arbitrary opera-
tions like “quenching” break connections between these
ensembles and quantum field theory foundations, so the
correlator positivity and other general features of QFTs
can and are violated.

It has been later shown (see review Schafer:1996wv)
that in the so called interacting instanton liquid model
(IILM) – which includes the fermionic determinant in the
measure – these abnormal phenomena disappear. And
they, of course, also are not present in unquenched lat-
tice simulations with the dynamical quarks. So, although
we have not yet done simulations with fully interacting
(unquenched) ensemble fo SU(3) instanton-dyons, we are
confident that in this case these abnormalities would dis-
appear as well.

Now we return to Fig. 8 in which the correlations func-
tions are shown for all four channels under consideration,

FIG. 8: (Color online) The colored points connected by lines
are our results for four channels, for r12 = 0.2. Top to bot-
tom: Pseudoscalar (Brown) ⇤, Vector (Green) ⇧ , Axial vector
(Red) 4, and Scalar (Blue) •. The individual (black) points
without lines are lattice data from [22], their symbols are the
same as for our data.

P, V, A, S from top to bottom. One can clearly see, that
for small distances x < 1/3 fm all of them are in a good
approximation identical. We further remind that their
value in this region, equal to 1 in our normalization, cor-
responds to free propagation of the massless quark and
antiquark.

At larger distances in Fig.8 our simulations for the four
channels display clear splitting pattern, which is nearly
identical to what was first observed in RILM and then on
the lattice in 1990’s. The lines go upward correspond to
attractive channels P, V and those going downward show
repulsion in the A, S channels. For comparison we also
show in this figure the results from [22], shown by simi-
lar symbols as ours but without connecting lines. Over-
all our results are reasonably well consistent with these
lattice data. On a quantitative level one finds certain dif-
ferences: e.g. the splitting of our pseudoscaler is slightly
weaker than on the lattice. All these di↵erences are how-
ever completely understandable and are due to di↵erent
values of the quark masses in our ensemble and on the
lattice.

Last subject we would like to discuss for the mesonic
correlators is how they change as the temperature
increases. These changes are supposed to be caused by
(at least) the following e↵ects:
(i) the VEV of the Polyakov line moves toward trivial
value 1, and thus the holonomy parameter ⌫ goes
towards 0;
(ii) the e↵ective coupling runs to smaller values, the
action of the dyons grow and their density decreases;
(iii) the size of the Matsubara box decreases

We implement only the first two modifications, ignor-
ing the last kinematical one and keeping (for illustration
purposes) the same box size. The results of the calcula-

The rLM  parameter of the model is fitted from the V-A
combination which is well known from ALEPH data and lattice.

Its value tells us that L and M1,M2 are well correlated low T

M. Tomii et al. [JLQCD Collaboration],  
arXiv:1703.06249



instanton in a box
E,M=0 =>Q integer

chi=<Q^2>

dyon and anti-dyon
have non-integer Q

and nonzero E,M=+-1

the Q quantization theorem is not violated  
because of the(invisible) Dirac string

Why study fluctuations using sub-volumes?



Topological fluctuations, using 
the Q=0 ensemble:
The ``slab method”

4

used for the instanton liquid simulations. Recent studies
of the instanton-dyon ensemble have been done using the
S3 sphere. The global charges – e.g. magnetic M and
electric E – are fixed by the amount of dyons, and thus
cannot fluctuate.

+

-

FIG. 4: (left) A sketch of the torus with the subvolumes cut
out; (right) The subvolumes of the S

3 sphere are, after a stere-
ographic projection, the interior and exterior of the S

2 sphere
as shown. The indicated ± charges can now be separated as
shown.

Cutting the torus by two planes, as shown in Fig.
4(left), one can obtain variable subvolumes V4. Note
that those have constant area A3. Therefore, the result
of studies of the fluctuation of Q in the instanton ensem-
ble with light fermions, reproduced in Fig. 5, at large
volume becomes horizontal (volume-independent). If the
volume in question, e.g. the 4-d torus used in lattice
or the S3 used in the instanton-dyon simulations, has a
boundary, like in sub-volumes to be discussed, the fluc-
tuations occur near it, basically in the volume

V
fluct

⇠ A
boundary

R
screening

(1)

FIG. 17. Pseudoscalar correlator KP (l4) (upper panel) and scalar gluonic correlator KS(l4) (lower panel) as a function of the
length l4 of the subvolume l4 �L

3, from (Shuryak & Verbaarschot 1995). Screening implies that the correlator depends only on
the surface, not on the volume of the torus. This means that in the presence of screening, K(l4) goes to a constant. The results
were obtained for Nc = 3 and mu = md = 10 MeV and ms = 150 MeV. The upper solid lines correspond to a random system
of instantons, while the other solid line shows the parametrization discussed in text (the dashed line in the upper panel shows
a slightly more sophisticated parametrization). Note the qualitative di↵erence between the data for topological and number
fluctuations.

where D(m, x) = m/(4⇡2x)K1(mx) is the (euclidean) propagator of a scalar particle and � is the ⌘ � ⌘0 mixing
angle. The correlator (227) has an obvious physical interpretation. The local terms is the contribution from a single
instanton located at the center, while the second term is the contribution from the screening cloud. One can easily
check that the integral of the correlator is of order m2

�

, so �
top

⇠ m in the chiral limit. We also observe that the
screening length is given by the mass of the ⌘0.

Detailed numerical studies of topological charge screening in the interacting instanton model were performed in
(Shuryak & Verbaarschot 1995). The authors verified that complete screening takes place if one of the quark masses
goes to zero and that the screening length is consistent with the ⌘0 mass. They also addressed the question how the
⌘0 mass can be extracted from topological charge fluctuations. The main idea is not to study the limiting value of
�Q2�/V for large volumes, but determine its dependence on V for small volumes V < 1 fm4. In this case, one has to
worry about possible surface e↵ects. It is therefore best to consider the topological charge in a segment H(l4) = l4�L3

of the torus L4 (a hypercube with periodic boundary conditions). This construction ensures that the surface area of
H(l4) is independent of its volume. Using the e↵ective meson action introduced above, we expect (in the chiral limit)

K
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2� = L3
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FIG. 5: An example of the susceptibility in sub-box �sublat

as a function of the fraction of the total box, x/L, from [24].
The thin parabolic line corresponds to randomly placed in-
stantons and antiinstantons, the dots are for the interacting
instanton liquid. Strong screening of the topological charge
in this model is evident. Thin lines show di↵erent fits, from
which the value of m⌘0 was extracted.

The setting of the instanton-dyon simulations we will
study is di↵erent. The S3 sphere, imbedded into 4-d

space, can be cut into two parts by a single plane. It is
convenient to think about the stereographic projection of
this sphere back to the 3-d space. The resulting bound-
ary is the S2 sphere, with the 3-d subvolumes being its
interior and exterior space, as shown in Fig. 4(right).
We remind that the volumes of both subvolumes are fi-
nite, see details in the appendix. When the radius of the
boundary grows, its area reaches a maximum, at the an-
gle  = ⇡/2, and then decreases, due to the r-dependent
factor induced by the stereographic projection.

B. The fluctuating charges

One can either study fluctuations of each dyon type,
or of their particular combinations. We propose instead
to focus on the fluctuations of the following global quan-
tum numbers, the topological charge Q, the magnetic
and electric charges M and E, and the action S

�
Q

=< Q2 >

�
M

=< M2 >

�
E

=< E2 > � < E >2 (2)

�
S

=< S2 > � < S >2

Note that the last two have a non-zero VEV, which needs
to be subtracted. The average magnetic charge < M >=
0 because dyon ensembles have equal number of dyons
and anti-dyons. The electric charge is di↵erent, because
in general n

M

6= n
L

.
The former one is the well known topological suscepti-

bility, long studied on the lattice. Its usual definition in-
cludes division by the 4-volume V4 and the limit V4 ! 1,
which eliminates the dependence on the volume shape.
As it was already emphasized in [24], not only is this
limit unnecessary, the study of the fluctuations depen-
dence on the volume shape and size reveals such valuable
information as the screening lengths for the corresponding
charges. For Q it is known as the ⌘0 mass, and for M, E
as the magnetic and electric screening masses m

M

, m
E

–
all three subject for separate lattice measurements.

Let us further remind that in QCD-like theories with
light quarks the topological susceptibility vanishes in the
chiral limit m ! 0 and is suppressed by the powers of
the nonzero quark masses, O(m) at T < T

c

and O(mNf )
at T > T

c

. The latter is just the suppression due to ’t
Hooft zero modes.

At high T > 2T
c

the VEV of the Polyakov line
< P >⇡ 1 and the nontrivial holonomy fields are prac-
tically absent. That means the topological objects are
the instantons (or, more precisely, their finite-T version
known as calorons). Since at such T the instanton actions
are large and density exponentially small, one expects,
and indeed observes on the lattice, that the topological
ensemble is represented by the Dilute Instanton Ensem-
ble (DIE). Diluteness leads to the Poisson statistics of
fluctuations, and thus �

Q

basically gives us the instan-
ton density.
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Detailed numerical studies of topological charge screening in the interacting instanton model were performed in
(Shuryak & Verbaarschot 1995). The authors verified that complete screening takes place if one of the quark masses
goes to zero and that the screening length is consistent with the ⌘0 mass. They also addressed the question how the
⌘0 mass can be extracted from topological charge fluctuations. The main idea is not to study the limiting value of
�Q2�/V for large volumes, but determine its dependence on V for small volumes V < 1 fm4. In this case, one has to
worry about possible surface e↵ects. It is therefore best to consider the topological charge in a segment H(l4) = l4�L3

of the torus L4 (a hypercube with periodic boundary conditions). This construction ensures that the surface area of
H(l4) is independent of its volume. Using the e↵ective meson action introduced above, we expect (in the chiral limit)
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2� = L3
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FIG. 5: An example of the susceptibility in sub-box �sublat

as a function of the fraction of the total box, x/L, from [24].
The thin parabolic line corresponds to randomly placed in-
stantons and antiinstantons, the dots are for the interacting
instanton liquid. Strong screening of the topological charge
in this model is evident. Thin lines show di↵erent fits, from
which the value of m⌘0 was extracted.

The setting of the instanton-dyon simulations we will
study is di↵erent. The S3 sphere, imbedded into 4-d

space, can be cut into two parts by a single plane. It is
convenient to think about the stereographic projection of
this sphere back to the 3-d space. The resulting bound-
ary is the S2 sphere, with the 3-d subvolumes being its
interior and exterior space, as shown in Fig. 4(right).
We remind that the volumes of both subvolumes are fi-
nite, see details in the appendix. When the radius of the
boundary grows, its area reaches a maximum, at the an-
gle  = ⇡/2, and then decreases, due to the r-dependent
factor induced by the stereographic projection.

B. The fluctuating charges

One can either study fluctuations of each dyon type,
or of their particular combinations. We propose instead
to focus on the fluctuations of the following global quan-
tum numbers, the topological charge Q, the magnetic
and electric charges M and E, and the action S

�
Q

=< Q2 >

�
M

=< M2 >

�
E

=< E2 > � < E >2 (2)

�
S

=< S2 > � < S >2

Note that the last two have a non-zero VEV, which needs
to be subtracted. The average magnetic charge < M >=
0 because dyon ensembles have equal number of dyons
and anti-dyons. The electric charge is di↵erent, because
in general n

M

6= n
L

.
The former one is the well known topological suscepti-

bility, long studied on the lattice. Its usual definition in-
cludes division by the 4-volume V4 and the limit V4 ! 1,
which eliminates the dependence on the volume shape.
As it was already emphasized in [24], not only is this
limit unnecessary, the study of the fluctuations depen-
dence on the volume shape and size reveals such valuable
information as the screening lengths for the corresponding
charges. For Q it is known as the ⌘0 mass, and for M, E
as the magnetic and electric screening masses m

M

, m
E

–
all three subject for separate lattice measurements.

Let us further remind that in QCD-like theories with
light quarks the topological susceptibility vanishes in the
chiral limit m ! 0 and is suppressed by the powers of
the nonzero quark masses, O(m) at T < T

c

and O(mNf )
at T > T

c

. The latter is just the suppression due to ’t
Hooft zero modes.

At high T > 2T
c

the VEV of the Polyakov line
< P >⇡ 1 and the nontrivial holonomy fields are prac-
tically absent. That means the topological objects are
the instantons (or, more precisely, their finite-T version
known as calorons). Since at such T the instanton actions
are large and density exponentially small, one expects,
and indeed observes on the lattice, that the topological
ensemble is represented by the Dilute Instanton Ensem-
ble (DIE). Diluteness leads to the Poisson statistics of
fluctuations, and thus �

Q

basically gives us the instan-
ton density.

7

In flat space fluctuations in a subvolume V can be de-
scribed by the double integral

I
V

=

Z

x,y2V

d3xd3yK(|x � y|) (B3)

On the 3-dimensional sphere S3 one needs to find the
analog to the Yukawa potential. The screened Coulomb
potential of a charge, placed on the north pole of the
S3 sphere  = 0, can be found from the  -part of the
Laplacian, which reads

1
p

g
@

µ

(
p

ggµ⌫@
⌫

f) = f 00( ) +
2

tan( )
f 0( ) (B4)

Adding the mass term, one finds the needed analogue of
the Yukawa potential to be

f( ) =
exp[�

p
�1 + m2R2 ]

4⇡sin( )
(B5)

Note the presence of the second singularity at the south
pole  = ⇡, which is however exponentially suppressed by
exp(�mR⇡) and disappear for large macroscopic spheres
mR � 1.
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Correlations and fluctuations of the gauge topology at finite temperatures
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Instanton-dyons are topological solitons – solutions of Yang-Mills equations – which appear at
non-trivial expectation value of A0 at nonzero temperatures. Using the ensembles of those, generated
in our previous work, for 2-color and 2-flavor QCD, below and above the deconfinement-chiral phase
transition, we study the correlations between them, as well as fluctuations of several global charges in
the sub-volumes of the total volume. The determined correlation lengths are the finite-T extension
of hadronic masses, such as that of ⌘

0 meson.

I. INTRODUCTION

A. Instanton-dyon ensembles

Instantons, discovered in 1970’s [1] are 4-dimensional
Euclidean topological solitons of the gauge theory. En-
sembles of instantons were studied in 1980’s and 1990’s,
in a frame of the so called “instanton liquid model”, for a
review see [2]. They were shown to explain explicit break-
ing of the U(1)

a

and spontaneous breaking of the SU(N
f

)
chiral symmetries, and a large number of hadronic corre-
lation functions.

The so called Polyakov line is used as a deconfinement
order parameter, being nonzero at T > T

c

. Interpret-
ing this as existence of nonzero average A0 field, one
needs to modify all classical solutions respectively. When
such solutions were found in 1998 [3, 4] it was realized
that instantons get split into N

c

(number of colors) con-
stituents, the selfdual instanton-dyons connected only by
(invisible) Dirac strings. Since these objects have nonzero
electric and magnetic charges and source Abelian (diag-
onal) massless gluons, the corresponding ensemble is an
“instanton-dyon plasma”, with long-range Coulomb-like
forces between constituents.

The first application of the instanton-dyons were made
soon after their discovery in the context of supersym-
metric gluodynamics [5]. This paper set up an infinitely
dilute but confining setting, and solved a historically im-
portant puzzling mismatch of the value of the gluino con-
densate in this theory. Further work on semi-classical
confining regimes in parametrically dilute settings has
been done by Poppitz, Unsal et al [6, 7] .

Recent progress is related to studies of the semiclassi-
cal instanton-dyon ensembles. The high-density confin-
ing phase can be studied analytically, in the mean field
approximation [8–12]. Direct numerical simulation of the
dyon ensembles, started in [13], have demonstrated that
back reaction of the dyons on the holonomy potential
generates the deconfinement phase transition. It is of
the second order for pure gauge SU(2) theory [15], but
it becomes a smooth cross over if two light quark flavors
are included [16]. The last theory also shows the chi-
ral restoration phase transition, also a crossover, which
occurs at approximately the same temperature. Both
phase transitions show strong changes [17] as a function
of nontrivial quark periodicity phases (known also as fla-

vor holonomies or imaginary chemical potentials). For a
recent brief review see [18].

B. Lattice studies

Recent e↵orts has resulted in a substantial progress in
lattice evaluation of the topological susceptibility �(T ),
and even higher moments of the topological charge distri-
bution, in a wide range of temperatures, see e.g. [19–21].
Although there remain serious methodical questions, it
is generally accepted that at the high temperatures, say
T > 2T

c

, these data can be explained by a dilute gas
of independent instantons. This statement holds even
in QCD with (realistically) light quarks, where the in-
stantons are highly suppressed by the product of quark
masses.

The main questions of the field are the following ones:
What are the main building blocks of the topological
ensembles at lower T < 2T

c

, are they still the instan-

tons, or those get disassembled into their constituents,
the instanton-dyons? What is the density and manifesta-
tions of the neutral topological clusters, not contributing
to �, such as the instanton-antiinstanton molecules?

We already mentioned the main lattice observable, the
vacuum expectation value (VEV) of the Polyakov line.
Its temperature dependence < P (T ) > is by now well
established. In QCD it gradually changes between zero
and one when T changes from T

c

to roughly 2.5T
c

. Lat-
tice data on �(T ) in this region has not yet converged,
but it is already clear that it does not follow the dilute
instanton gas power. The question remains whether in-
deed the topology ensemble can be correctly described by
a plasma of instanton constituents, instanton dyons, and,
if so, where and how this change in the basic topology
units happens.

The semiclassical theory of the instanton-dyons has
shown that their ensemble undergoes deconfinement and
chiral transitions near T

c

. As we already mentioned, this
theory semi-qualitatively reproduce the lattice results,
both in pure glue and in QCD-like settings. The question
now is how to make this comparison quantitative. In this
respect the ongoing e↵orts to locate the instanton-dyons
on the lattice, e.g. by Ilgenfritz and collaborators [22],
with or without imaginary chemical potentials, are very
important.
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non-trivial expectation value of A0 at nonzero temperatures. Using the ensembles of those, generated
in our previous work, for 2-color and 2-flavor QCD, below and above the deconfinement-chiral phase
transition, we study the correlations between them, as well as fluctuations of several global charges in
the sub-volumes of the total volume. The determined correlation lengths are the finite-T extension
of hadronic masses, such as that of ⌘

0 meson.

I. INTRODUCTION

A. Instanton-dyon ensembles

Instantons, discovered in 1970’s [1] are 4-dimensional
Euclidean topological solitons of the gauge theory. En-
sembles of instantons were studied in 1980’s and 1990’s,
in a frame of the so called “instanton liquid model”, for a
review see [2]. They were shown to explain explicit break-
ing of the U(1)

a

and spontaneous breaking of the SU(N
f

)
chiral symmetries, and a large number of hadronic corre-
lation functions.

The so called Polyakov line is used as a deconfinement
order parameter, being nonzero at T > T

c

. Interpret-
ing this as existence of nonzero average A0 field, one
needs to modify all classical solutions respectively. When
such solutions were found in 1998 [3, 4] it was realized
that instantons get split into N
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(number of colors) con-
stituents, the selfdual instanton-dyons connected only by
(invisible) Dirac strings. Since these objects have nonzero
electric and magnetic charges and source Abelian (diag-
onal) massless gluons, the corresponding ensemble is an
“instanton-dyon plasma”, with long-range Coulomb-like
forces between constituents.

The first application of the instanton-dyons were made
soon after their discovery in the context of supersym-
metric gluodynamics [5]. This paper set up an infinitely
dilute but confining setting, and solved a historically im-
portant puzzling mismatch of the value of the gluino con-
densate in this theory. Further work on semi-classical
confining regimes in parametrically dilute settings has
been done by Poppitz, Unsal et al [6, 7] .

Recent progress is related to studies of the semiclassi-
cal instanton-dyon ensembles. The high-density confin-
ing phase can be studied analytically, in the mean field
approximation [8–12]. Direct numerical simulation of the
dyon ensembles, started in [13], have demonstrated that
back reaction of the dyons on the holonomy potential
generates the deconfinement phase transition. It is of
the second order for pure gauge SU(2) theory [15], but
it becomes a smooth cross over if two light quark flavors
are included [16]. The last theory also shows the chi-
ral restoration phase transition, also a crossover, which
occurs at approximately the same temperature. Both
phase transitions show strong changes [17] as a function
of nontrivial quark periodicity phases (known also as fla-

vor holonomies or imaginary chemical potentials). For a
recent brief review see [18].

B. Lattice studies

Recent e↵orts has resulted in a substantial progress in
lattice evaluation of the topological susceptibility �(T ),
and even higher moments of the topological charge distri-
bution, in a wide range of temperatures, see e.g. [19–21].
Although there remain serious methodical questions, it
is generally accepted that at the high temperatures, say
T > 2T

c

, these data can be explained by a dilute gas
of independent instantons. This statement holds even
in QCD with (realistically) light quarks, where the in-
stantons are highly suppressed by the product of quark
masses.

The main questions of the field are the following ones:
What are the main building blocks of the topological
ensembles at lower T < 2T

c

, are they still the instan-

tons, or those get disassembled into their constituents,
the instanton-dyons? What is the density and manifesta-
tions of the neutral topological clusters, not contributing
to �, such as the instanton-antiinstanton molecules?

We already mentioned the main lattice observable, the
vacuum expectation value (VEV) of the Polyakov line.
Its temperature dependence < P (T ) > is by now well
established. In QCD it gradually changes between zero
and one when T changes from T

c

to roughly 2.5T
c

. Lat-
tice data on �(T ) in this region has not yet converged,
but it is already clear that it does not follow the dilute
instanton gas power. The question remains whether in-
deed the topology ensemble can be correctly described by
a plasma of instanton constituents, instanton dyons, and,
if so, where and how this change in the basic topology
units happens.

The semiclassical theory of the instanton-dyons has
shown that their ensemble undergoes deconfinement and
chiral transitions near T

c

. As we already mentioned, this
theory semi-qualitatively reproduce the lattice results,
both in pure glue and in QCD-like settings. The question
now is how to make this comparison quantitative. In this
respect the ongoing e↵orts to locate the instanton-dyons
on the lattice, e.g. by Ilgenfritz and collaborators [22],
with or without imaginary chemical potentials, are very
important.

ar
X

iv
:1

70
3.

02
43

4v
1 

 [h
ep

-p
h]

  7
 M

ar
 2

01
7

4

used for the instanton liquid simulations. Recent studies
of the instanton-dyon ensemble have been done using the
S3 sphere. The global charges – e.g. magnetic M and
electric E – are fixed by the amount of dyons, and thus
cannot fluctuate.

+

-

FIG. 4: (left) A sketch of the torus with the subvolumes cut
out; (right) The subvolumes of the S

3 sphere are, after a stere-
ographic projection, the interior and exterior of the S

2 sphere
as shown. The indicated ± charges can now be separated as
shown.

Cutting the torus by two planes, as shown in Fig.
4(left), one can obtain variable subvolumes V4. Note
that those have constant area A3. Therefore, the result
of studies of the fluctuation of Q in the instanton ensem-
ble with light fermions, reproduced in Fig. 5, at large
volume becomes horizontal (volume-independent). If the
volume in question, e.g. the 4-d torus used in lattice
or the S3 used in the instanton-dyon simulations, has a
boundary, like in sub-volumes to be discussed, the fluc-
tuations occur near it, basically in the volume

V
fluct

⇠ A
boundary

R
screening

(1)

FIG. 17. Pseudoscalar correlator KP (l4) (upper panel) and scalar gluonic correlator KS(l4) (lower panel) as a function of the
length l4 of the subvolume l4 �L

3, from (Shuryak & Verbaarschot 1995). Screening implies that the correlator depends only on
the surface, not on the volume of the torus. This means that in the presence of screening, K(l4) goes to a constant. The results
were obtained for Nc = 3 and mu = md = 10 MeV and ms = 150 MeV. The upper solid lines correspond to a random system
of instantons, while the other solid line shows the parametrization discussed in text (the dashed line in the upper panel shows
a slightly more sophisticated parametrization). Note the qualitative di↵erence between the data for topological and number
fluctuations.

where D(m, x) = m/(4⇡2x)K1(mx) is the (euclidean) propagator of a scalar particle and � is the ⌘ � ⌘0 mixing
angle. The correlator (227) has an obvious physical interpretation. The local terms is the contribution from a single
instanton located at the center, while the second term is the contribution from the screening cloud. One can easily
check that the integral of the correlator is of order m2

�

, so �
top

⇠ m in the chiral limit. We also observe that the
screening length is given by the mass of the ⌘0.

Detailed numerical studies of topological charge screening in the interacting instanton model were performed in
(Shuryak & Verbaarschot 1995). The authors verified that complete screening takes place if one of the quark masses
goes to zero and that the screening length is consistent with the ⌘0 mass. They also addressed the question how the
⌘0 mass can be extracted from topological charge fluctuations. The main idea is not to study the limiting value of
�Q2�/V for large volumes, but determine its dependence on V for small volumes V < 1 fm4. In this case, one has to
worry about possible surface e↵ects. It is therefore best to consider the topological charge in a segment H(l4) = l4�L3

of the torus L4 (a hypercube with periodic boundary conditions). This construction ensures that the surface area of
H(l4) is independent of its volume. Using the e↵ective meson action introduced above, we expect (in the chiral limit)

K
P
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2� = L3
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FIG. 5: An example of the susceptibility in sub-box �sublat

as a function of the fraction of the total box, x/L, from [24].
The thin parabolic line corresponds to randomly placed in-
stantons and antiinstantons, the dots are for the interacting
instanton liquid. Strong screening of the topological charge
in this model is evident. Thin lines show di↵erent fits, from
which the value of m⌘0 was extracted.

The setting of the instanton-dyon simulations we will
study is di↵erent. The S3 sphere, imbedded into 4-d

space, can be cut into two parts by a single plane. It is
convenient to think about the stereographic projection of
this sphere back to the 3-d space. The resulting bound-
ary is the S2 sphere, with the 3-d subvolumes being its
interior and exterior space, as shown in Fig. 4(right).
We remind that the volumes of both subvolumes are fi-
nite, see details in the appendix. When the radius of the
boundary grows, its area reaches a maximum, at the an-
gle  = ⇡/2, and then decreases, due to the r-dependent
factor induced by the stereographic projection.

B. The fluctuating charges

One can either study fluctuations of each dyon type,
or of their particular combinations. We propose instead
to focus on the fluctuations of the following global quan-
tum numbers, the topological charge Q, the magnetic
and electric charges M and E, and the action S

�
Q

=< Q2 >

�
M

=< M2 >

�
E

=< E2 > � < E >2 (2)

�
S

=< S2 > � < S >2

Note that the last two have a non-zero VEV, which needs
to be subtracted. The average magnetic charge < M >=
0 because dyon ensembles have equal number of dyons
and anti-dyons. The electric charge is di↵erent, because
in general n

M

6= n
L

.
The former one is the well known topological suscepti-

bility, long studied on the lattice. Its usual definition in-
cludes division by the 4-volume V4 and the limit V4 ! 1,
which eliminates the dependence on the volume shape.
As it was already emphasized in [24], not only is this
limit unnecessary, the study of the fluctuations depen-
dence on the volume shape and size reveals such valuable
information as the screening lengths for the corresponding
charges. For Q it is known as the ⌘0 mass, and for M, E
as the magnetic and electric screening masses m

M

, m
E

–
all three subject for separate lattice measurements.

Let us further remind that in QCD-like theories with
light quarks the topological susceptibility vanishes in the
chiral limit m ! 0 and is suppressed by the powers of
the nonzero quark masses, O(m) at T < T

c

and O(mNf )
at T > T

c

. The latter is just the suppression due to ’t
Hooft zero modes.

At high T > 2T
c

the VEV of the Polyakov line
< P >⇡ 1 and the nontrivial holonomy fields are prac-
tically absent. That means the topological objects are
the instantons (or, more precisely, their finite-T version
known as calorons). Since at such T the instanton actions
are large and density exponentially small, one expects,
and indeed observes on the lattice, that the topological
ensemble is represented by the Dilute Instanton Ensem-
ble (DIE). Diluteness leads to the Poisson statistics of
fluctuations, and thus �

Q

basically gives us the instan-
ton density.

The interacting  
Instanton-dyon ensemble 

 simulated on the O(3) sphere. 
If cut and projected to flat 3-d, 

it produces interior and exterior
of an ordinary O(2) sphere



4

used for the instanton liquid simulations. Recent studies
of the instanton-dyon ensemble have been done using the
S3 sphere. The global charges – e.g. magnetic M and
electric E – are fixed by the amount of dyons, and thus
cannot fluctuate.

+

-

FIG. 4: (left) A sketch of the torus with the subvolumes cut
out; (right) The subvolumes of the S

3 sphere are, after a stere-
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Cutting the torus by two planes, as shown in Fig.
4(left), one can obtain variable subvolumes V4. Note
that those have constant area A3. Therefore, the result
of studies of the fluctuation of Q in the instanton ensem-
ble with light fermions, reproduced in Fig. 5, at large
volume becomes horizontal (volume-independent). If the
volume in question, e.g. the 4-d torus used in lattice
or the S3 used in the instanton-dyon simulations, has a
boundary, like in sub-volumes to be discussed, the fluc-
tuations occur near it, basically in the volume

V
fluct

⇠ A
boundary

R
screening

(1)

FIG. 17. Pseudoscalar correlator KP (l4) (upper panel) and scalar gluonic correlator KS(l4) (lower panel) as a function of the
length l4 of the subvolume l4 �L

3, from (Shuryak & Verbaarschot 1995). Screening implies that the correlator depends only on
the surface, not on the volume of the torus. This means that in the presence of screening, K(l4) goes to a constant. The results
were obtained for Nc = 3 and mu = md = 10 MeV and ms = 150 MeV. The upper solid lines correspond to a random system
of instantons, while the other solid line shows the parametrization discussed in text (the dashed line in the upper panel shows
a slightly more sophisticated parametrization). Note the qualitative di↵erence between the data for topological and number
fluctuations.

where D(m, x) = m/(4⇡2x)K1(mx) is the (euclidean) propagator of a scalar particle and � is the ⌘ � ⌘0 mixing
angle. The correlator (227) has an obvious physical interpretation. The local terms is the contribution from a single
instanton located at the center, while the second term is the contribution from the screening cloud. One can easily
check that the integral of the correlator is of order m2

�

, so �
top

⇠ m in the chiral limit. We also observe that the
screening length is given by the mass of the ⌘0.

Detailed numerical studies of topological charge screening in the interacting instanton model were performed in
(Shuryak & Verbaarschot 1995). The authors verified that complete screening takes place if one of the quark masses
goes to zero and that the screening length is consistent with the ⌘0 mass. They also addressed the question how the
⌘0 mass can be extracted from topological charge fluctuations. The main idea is not to study the limiting value of
�Q2�/V for large volumes, but determine its dependence on V for small volumes V < 1 fm4. In this case, one has to
worry about possible surface e↵ects. It is therefore best to consider the topological charge in a segment H(l4) = l4�L3

of the torus L4 (a hypercube with periodic boundary conditions). This construction ensures that the surface area of
H(l4) is independent of its volume. Using the e↵ective meson action introduced above, we expect (in the chiral limit)

K
P

(l4) � �Q(l4)
2� = L3

✓
N

V

◆
1

m
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�
1 � e�m�0 l4

�
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FIG. 5: An example of the susceptibility in sub-box �sublat

as a function of the fraction of the total box, x/L, from [24].
The thin parabolic line corresponds to randomly placed in-
stantons and antiinstantons, the dots are for the interacting
instanton liquid. Strong screening of the topological charge
in this model is evident. Thin lines show di↵erent fits, from
which the value of m⌘0 was extracted.

The setting of the instanton-dyon simulations we will
study is di↵erent. The S3 sphere, imbedded into 4-d

space, can be cut into two parts by a single plane. It is
convenient to think about the stereographic projection of
this sphere back to the 3-d space. The resulting bound-
ary is the S2 sphere, with the 3-d subvolumes being its
interior and exterior space, as shown in Fig. 4(right).
We remind that the volumes of both subvolumes are fi-
nite, see details in the appendix. When the radius of the
boundary grows, its area reaches a maximum, at the an-
gle  = ⇡/2, and then decreases, due to the r-dependent
factor induced by the stereographic projection.

B. The fluctuating charges

One can either study fluctuations of each dyon type,
or of their particular combinations. We propose instead
to focus on the fluctuations of the following global quan-
tum numbers, the topological charge Q, the magnetic
and electric charges M and E, and the action S

�
Q

=< Q2 >

�
M

=< M2 >

�
E

=< E2 > � < E >2 (2)

�
S

=< S2 > � < S >2

Note that the last two have a non-zero VEV, which needs
to be subtracted. The average magnetic charge < M >=
0 because dyon ensembles have equal number of dyons
and anti-dyons. The electric charge is di↵erent, because
in general n

M

6= n
L

.
The former one is the well known topological suscepti-

bility, long studied on the lattice. Its usual definition in-
cludes division by the 4-volume V4 and the limit V4 ! 1,
which eliminates the dependence on the volume shape.
As it was already emphasized in [24], not only is this
limit unnecessary, the study of the fluctuations depen-
dence on the volume shape and size reveals such valuable
information as the screening lengths for the corresponding
charges. For Q it is known as the ⌘0 mass, and for M, E
as the magnetic and electric screening masses m

M

, m
E

–
all three subject for separate lattice measurements.

Let us further remind that in QCD-like theories with
light quarks the topological susceptibility vanishes in the
chiral limit m ! 0 and is suppressed by the powers of
the nonzero quark masses, O(m) at T < T

c

and O(mNf )
at T > T

c

. The latter is just the suppression due to ’t
Hooft zero modes.

At high T > 2T
c

the VEV of the Polyakov line
< P >⇡ 1 and the nontrivial holonomy fields are prac-
tically absent. That means the topological objects are
the instantons (or, more precisely, their finite-T version
known as calorons). Since at such T the instanton actions
are large and density exponentially small, one expects,
and indeed observes on the lattice, that the topological
ensemble is represented by the Dilute Instanton Ensem-
ble (DIE). Diluteness leads to the Poisson statistics of
fluctuations, and thus �

Q

basically gives us the instan-
ton density.

5

At lower T < 300�400 MeV , the VEV of the Polyakov
line takes some values between 1 and 0, and the ap-
propriate ensemble should be described in terms of the
instanton-dyons. While all of them have the topologi-
cal charge Q, only “twisted” L-kind have fermionic zero
modes. Therefore, fluctuations of Q and fermion mass
suppression should in principle become decoupled. In
particularly, in the chiral limit there should be a non-
zero �

Q

due to M -type dyons.

FIG. 6: The mean topological charge squared < Q

2
> in a

subvolume, versus the cut parameter cos( cut).

C. Fluctuations in the instanton-dyon ensemble

In Fig. 6 we show a typical histogram, displaying fluc-
tuation of the topological charge < Q2 > as a function of
the size of the subvolume. It has a characteristic symmet-
ric shape, because fluctuations in a small volume and in a
complementary volume which includes the whole sphere
without a small part, are identical.

In order to understand them better, one needs to nor-
malize such histograms to a distribution calculated for
uncorrelated dyons. The uncorrelated case is only vol-
ume dependent and one can therefore write the probabil-
ity for finding n out of N charges in a sub-volume V of
the total volume V0, as

P (V, n) =
N !

n!(N � n)!
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✓
1 � V

V0

◆
N�n

(3)

Which gives the fluctuation when summed over the
charge squared for all n.

The resulting plots are shown in Fig. 7. Note, that
if the ensemble be an ideal gas, by definition all plots
should show values equal to one.

Few comments on those are in order:
(i) The fluctuations of all charges are very similar. They
all seem to be of the “volume” kind, since the plots nor-
malized to random ensemble all look rather flat.
(ii) The absolute value of the fluctuations is however not
one, but smaller. This reflects presence of an attraction

FIG. 7: (Color online) The normalized fluctuations of the
topological charge Q, the magnetic charge M , the electric
charge E and the action S, as a function of subvolume cut
cos( cut). Because of symmetry of the distributions, only
one half of it is shown. The l.h.s., cos( cut) = 0 corre-
sponds to cutting the sphere into two equal halfs, the r.h.s.
at cos( cut) ! 1 corresponds to cutting o↵ a very small part.
The di↵erent points corresponds to di↵erent temperatures as
explained in Fig. 1.

between opposite charges, resulting in formation of “neu-
tral clusters”, pairs etc.
(iii) Like for the correlations discussed above, we observe
only very small temperature dependence of the fluctua-
tions.
(iv) There are visible deviations from constant value of
the normalized fluctuations at the “wings” of the distri-
butions. Those appear when the sub-volume dimension
becomes comparable to the micro correlation lengths of
the objects themselves.
(v) Some combinations of dyon interactions have a hard
core in the ensemble. This cuts out possible small fluctu-
ations, and is at least partially responsible for the values
far o↵ one at small volumes, ie. x-axis close to 1.

We do not try fitting those deviations for the values of
the screening masses, as those were much better displayed
by the correlation measurements reported above.

IV. SUMMARY AND DISCUSSION

Short-range correlations between LL̄ dyons is the chan-
nel corresponding to the < QQ > correlator in the QCD
vacuum, in the sense that both are related to quark-
induced forces and large ⌘0 mass. The main conclusions
one can get from our discussion of this correlation func-

All <1
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Summary

Instanton-dyon ensembles
At T=100 MeV can reproduce 

Mesonic and baryonic 
Correlation functions

But this is only possible if
L and M1,M2 dyons are quite well correlated,

Making a (slightly deformed) instantons
Fluctuations in interacting dyon ensemble studied

And reveal to which extent quantum numbers 
Are locally neutralized


