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/ 1. Introduction and physics motivation

» Direct photons are an important probe of the matter produced in

heavy ion collisions, and they
® are produced during all stages of a heavy-ion collision

® have long mean free path and escape a heavy ion collision region

unmodified with almost no final state interaction

® carry information about the system at the time of production and

directly probe the conditions of their production environment

® can tell us something about the evolution of the temperature and

collective motion of the matter

> By definition
® direct photons = inclusive photons — hadronic decay photons

(inclusive photons are all the photons which are being measured in

a given measurement)

@ V. Khachatryan CPOD 17




/ » The large yield and large anisotropy observed at 200 GeV collision energy

pose a significant Challenge to theoretical models

» We know that it is difficult to get the large yield and flow simultaneously
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» Measurements at low collision energies, such as 62.4 GeV and 39 GeV, on the

other hand may provide new insight on the origin of the low momentum direct
photons
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2. Measurement details of Low Momentum Direct Photons

» The photon measurement techniques include

® measuring photons that directly deposit
energy into the EMCal

® virtual photons that internally convert
into eTe pairs
® real photons that externally convert into

ete pairs in a selected detector material

» The measurements of photons that directly
deposit energy into the EMCal works best at
higher momentum

» The measurements at low pr are difficult

with the EMCal because of

® hadron and minimal ionizing particle
contamination

® worsening calorimeter resolution

» Virtual photons that internally convert into
ete pairs allow a clean pr Mmeasurement
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> Real photons that externally convert in a
selected detector material into e*e pairs

® allow a clean low pr Measurement

® minimize the combined statistical and
systematic uncertainties that limit direct
photon measurements /




/ External conversions:

» So the raw inclusive photon yield N;”d is being measured through photon

_|_

conversions to e" e pairs
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Magnet TEC
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A cartoon illustrating the effect of the

assumption of the track origin

Beam View East
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The selected detector material for

conversions is the backplane of the
Hadron Blind Detector (HBD)

It sits at a radius of about 60 cm from
the event vertex

The identification of the converted
photons with HBD is very accurate

The purity of the photon sample is
99%
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» In the standard PHENIX momentum reconstruction algorithm the ete pair 2.
tracks originate from the event vertex (“vtx”)

® The momenta of the HBD converted photons are initially mis-measured

® It gives pairs an artificial opening angle, which leads to an apparent mass

> In the Alternate Track Model (ATM), the momenta of the conversion electrons
are recalculated under the assumption that the conversion takes place at the

HBD backplane, and in this case the mass is reconstructed faithfully
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/ s = 39 GeV 7
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» In a given pf bin the observed number of inclusive photons is related to the

true number of inclusive photons, Y, given as follows:
incl _ incl
N = Eee eeC7/

» The factor & _1is the conversion pair reconstruction efficiency; a  — the pair
ee p Y’ ee p
geometrical acceptance; ¢ — probability for a photon to undergo a conversion

» A subset of the inclusive conversion photon sample, N md, is tagged as

photons from 7 decays if they reconstruct the 7Y mass with a second,
photon—hke shower from the PHENIX EMCal
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/ » In each p bin the number of 7 tagged photons, N/ZO 99, is specified by

integrating the e"e'y mass distribution

o N 7,”0 199 is measured in terms of pre bins of the converted photon

1.8 < p5¥ <2.0GeV/c

2

_(b) ! !

Phys.Rev. C 91, 064904 (2015)
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> In a given p/* bin the true number of 7 decay photons, ™, is given as

7% tag = _
Ny =< 571‘ > Ny =
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@easuring Ry with the Double Ratio:

ete pair ete pair

efficiency acceptance

Conversion factor

2

N (p;)
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Sim
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SIMULATION

Photon efficiency

» Pair acceptance and efficiency cancel in the ratios as well as the conversion

factor
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f: Conditional acceptance

of the second decay photon
in the EMCal




/ 3. Direct photon results at 62.4 GeV and 39 GeV
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at 39 GeV collision energy
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Ry of direct photons in min bias 0-86%

at 62.4 GeV collision energy
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/ The invariant yield is calculated by 3.
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T, MeVic]

T vs. collision energy
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4. The scaling of direct photons

> In this plot we can see the integrated yield for four systems vs. NPart

® where for two of them the integrated yield is prompt photon subtracted
® and for the other two the yield is prompt photon unsubtracted
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The integrated yield for Aut+Au 200 GeV (PHENIX)

10° -
AuvAU= 1, +X. I <038 PHENIX
105" W5, =200GeV PRC 91, 064904 preliminary
B Y5y = 200 GeV PRL 104, 132301 O
1 N
L

—
Q

dN,/dy (pT > 1.0 GeV/c)
2

107
10*
10‘5 | | | | | I 11 | | | | | L 1 1 1 | | | | | I 1 11 |
10 10? 10°
dNg/dn |

> Here is the integrated yield, which is prompt photon unsubtracted
@ V. Khachatryan CPOD 17 (integrated from 1.0 GeV/c)




Cu+Cu 200 GeV (PHENIX) added

10° -
AuvAU= 1, +X. I <038 PHENIX
105" W5, =200GeV PRC 91, 064904 preliminary
1 B Y5y = 200 GeV PRL 104, 132301 O
m &
1 L
10 Y

dN,/dy (pT > 1.0 GeV/c)
2

107 CutCu—7y_+X, |y|<0.35
v '.'S_NN = 200 GeV PHENIX Prelim.
10*
10‘5 | | IIIIII| | | IIIIII| | | IIIIII|
10 10? 10°
dN_/dn |nf—=ﬂ

@ V. Khachatryan CPOD 17




Pb+Pb 2760 GeV (ALICE) added
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AutAu 62.4 GeV and Aut+Au 39 GeV (PHENIX) added

3

AutAu— T +X, |yl <035

M \S,, =200 GeV PRC 91, 064904

I {Syy = 200 GeV  PRL 104, 132301
®\s,, = 62.4 GeV PHENIX Prelim.
0 {5 = 39 GeV PHENIX Prefim.

—
-

—
Q

dN,/dy (pT > 1.0 GeV/c)
2

——
PH ENIX

preliminary

*f”ﬂ $ "

Pb+Pb — T, + X, |lv|<0.5

# V5, = 2760 GeV PLB 754, 235

3
10 CutCu—7y_+X, |y|<0.35

¥ {5, = 200 GeV PHENIX Prelim.
10*
10‘5 1 1 1 | 1111 | | | | 1 1 1 11 | 1 1 1 | 1 1 11 |

@ V. Khachatryan CPOD 17

10°




Add a fit to A+ A systems
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d+Au 200 GeV (PHENIX) and p+p 200 GeV (PHENIX) added
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Add a fit to small systems
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/ The purple line (with the purple error band) describes the integrated

yleld from N__, scaled PP fit
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/ Add a fit to the N_;, scaled points described by the purple line
in the previous page
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Add the expectation from N_ ;; scaled pQCD
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The yield for various systems integrated from 5.0 GeV/c to 8.0 GeV/c
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/ 5. Summary

1. We have measured R, and p; spectra for real photons at 200 GeYV,
62.4 GeV and 39 GeV as well as v, and v; at 200 GeV

2. The measurements at 200 GeV show many interesting features like the

large excess yield and anisotropy of low momentum direct photons

3. The measurements at 62.4 GeV and 39 GeV also show significant

excess yield at least for the most central collisions

4. We also see some scaling behavior of direct photons obtained from

different datasets at various collision energies

5. In particular, one can think about the possible existence of a
“turning point”, at which the thermal radiation from Quark

Gluon Plasma is being “switched on/off”.

@ Thank You !
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