Low Level Physics Benchmarks

Observables	Notes
Kinematic variable distributions/resolutions x, y, Q² for various methods	Different reconstruction methods are impacted more/less by different detector subsystems → Electron method (EEEMCAL, SVT), DA (SVT, FEMC, HCAL) etc
Input variable distributions/resolutions $E_{\text{e}},\theta_{\text{e}},\Sigma_{\text{h}},p_{\text{t},\text{h}}$	Inputs to kinematic reconstruction methods → better resolution = better reconstruction
Σ_{total} distribution/resolution	Should peak at \sim 2E _{e,beam} \rightarrow important for reducing impact of QED ISR, beam-gas/physics backgrounds \rightarrow better resolution = more veto power
$\Sigma_h/p_{t,h} distribution/resolution$	Gives $tan(y) \rightarrow quality$ of HFS angle measurement \rightarrow important for DA reconstruction \rightarrow insensitive to HFS energy resolution
$P_{t,h}/p_{t,e}$ distribution	Should peak at ~ 1 \rightarrow sensitive to gaps in acceptance, low energy losses etc
dE/E vs θ/ ϕ	Should be centred at dE/E ~0 → shows regions of poor reconstruction (e.g. transition between calorimeters)
E/p distribution/resolution for different charged particles	Important cut for electron finding
Electron purity	High purity requires efficient+precise electron reconstruction \rightarrow important to ensure we're looking at actual DIS electrons
Electron finding efficiency (vs E_e , θ_e , ϕ_e)	High efficiency electron finding maximises statistics