



# Machine Learning for Event Reconstruction at the EIC

MITACS Globalink Research Internship — Summer 2025

Tomas Sosa

Supervisor: Prof. Dr. Wouter Deconinck

University of Manitoba

June 27, 2025

Tomas Sosa (UofM) ML for Event Reconstruction

June 27, 2025

### Outline

- 1. Introduction
- 2. Motivation
- 3. Detector Context
- 4. ML Approach
- 5. E/p Preselection
- 6. CNN Classifier
- 7. Results
- 8. Next Steps
- 9. Expected Impact
- 10. Conclusions
- 11. References

### Introduction

- The Electron-Ion Collider (EIC) is a next-generation facility for nuclear physics.
- ePIC is the first detector to be built at the EIC.
- Canada plays a leading role in software and computing via the EIC Canada collaboration.
- This project is hosted by the University of Manitoba as part of the MITACS Globalink program.

#### Goal of the Internship

Integrate and validate a Machine Learning solution for particle identification in the ePIC detector.

MI for Event Reconstruction Tomas Sosa (UofM)

# Why Machine Learning?

- Traditional reconstruction methods are not optimal for high-granularity data.
- BIC high-granularity data produces complex energy-deposition patterns beyond a simple ratio.
- Machine Learning can identify patterns in complex energy deposition profiles.
- CNNs can learn spatial correlations across layers and hits, capturing subtle shower shape differences.
- Improves accuracy in particle identification (PID), which is crucial for many physics analyses.

#### **Application Area**

Particle identification using calorimeter shower profiles in the ePIC Barrel Imaging Calorimeter.

# Barrel Imaging Calorimeter (BIC)

- The BIC is part of the central calorimetry system of ePIC.
- Measures energy deposited by particles passing through.
- Electrons, pions, and photons leave distinct energy showers.
- Electrons generate compact and well-defined showers; pions show wider and less regular showers.

### **Physics Motivation**

Electron/pion separation is critical in measurements like  $\pi^0 \to \gamma \gamma$ .



June 27, 2025

## Machine Learning Pipeline

- We have divided our methodology into two steps: a classical cutoff using the E/p ratio and an ML cutoff using a CNN.
- Configuration:

Beam energy:  $E_{\rm beam} = 1.0 \, {\rm GeV}$ Polar angles  $\theta = 45^{\circ} - 135^{\circ}$ 

■ The objective is to have a total electron efficiency of 0.95 ( $\varepsilon_e = 0.95$ ) and at the same time maximize pion rejection ( $R_\pi$ ).

### Total Efficiency and Rejection Definitions

$$arepsilon_e = rac{N_e^{
m pass}}{N_e^{
m total}}, \quad R_\pi = rac{1}{rac{N_\pi^{
m pass}}{N_\pi^{
m total}}} = rac{N_\pi^{
m total}}{N_\pi^{
m pass}}$$



## First cut: E/p Preselection

- We first exploit the classic calorimeter-to-track ratio  $E/p = rac{\sum_{i=1}^L E_{ ext{SciFi}}(i)}{p_{ ext{track}}}$  .
- Physically:

Electrons shower electromagnetically  $\rightarrow$  deposit  $E \approx p$ . Pions leave minimum-ionizing signal  $\rightarrow E/p \ll 1$ .

- We scan L = 1...12 SciFi layers, for each finding the E/p threshold that keeps 97
- We select the best separation between all layers based on the maximum pion rejection and use the E/p ratio to obtain the initial cutoff



### Second cut: CNN Classifier

- At this point all events have already passed the E/p cut (keeps  $\approx$  97% of electrons, rejects pions by  $R_{\pi}^{E/p} \approx$  23).
- CNN's job consists of learning residual differences in shower shape to further separate electrons from pions.
- lacktriangle We must choose a CNN output threshold  $P_{e^-}^{\mathrm{cut}}$  such that

$$\varepsilon_{e^{-}}^{\mathrm{tot}} = \varepsilon_{e^{-}}^{E/p} \times \varepsilon_{e^{-}}^{\mathrm{ML}} \approx 0.95$$

(i.e. overall 95% electron efficiency).

- Our goal is to maximize the combined pion rejection  $R_{\pi}^{\rm tot} = R_{\pi}^{E/p} \times R_{\pi}^{\rm ML}$  at this 95% efficiency.
- $lue{}$  raw events ightarrow [ E/p pre-cut ] ightarrow [ CNN classifier ]

#### Total Efficiency and Rejection

$$\varepsilon_{\rm e}^{
m tot} = \varepsilon_{\rm e}^{E/p} \times \varepsilon_{\rm e}^{
m ML}, \quad R_{\pi}^{
m tot} = R_{\pi}^{E/p} \times R_{\pi}^{
m ML}$$

Tomas Soca (HoffM) MI for Event Reconstruction line 27, 2025 8, 8/18

### Data & Features

Data Loading: hits.snappy.parquet  $\rightarrow$  tensor  $(N_{\rm evt}, N_{\rm lavers}, N_{\rm hits}, N_{\rm feat} = 5)$ labels.snappy.parquet  $\rightarrow$  PDG codes  $\rightarrow$   $\{e^-, \pi^-\}$ 

Preprocessing:

```
Reshape to [event, layer, hit, feature]
Map PDG codes to binary labels (1=e^-, 0=\pi^-)
Pion weight: w_{\pi} = \min(\frac{N_e}{N} \times t_{\rm imb}, w_{\pi}^{\rm max}) with t_{\rm imb} = 0.1, w_{\pi}^{\rm max} = 1.0
Split train/val/test: 70 / 10 / 20
```

### Data Features (per hit)

```
e_{\text{norm}}: hit energy fraction
r_{\text{norm}}: radial coordinate
\Delta \eta and \Delta \phi from shower centroid
layer-type flag (Astropix or SciFi)
```

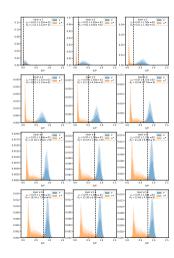


# Model Architecture & Training

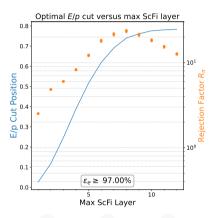
- Model (VGG-v2):  $[ \mathsf{Conv2D}(64,3) \times 2 \to \mathsf{MaxPool} ] \to$   $[ \mathsf{Conv2D}(128,3) \times 3 \to \mathsf{MaxPool} ] \to \mathsf{Flatten} \to \mathsf{Dense}(1024) \times 2 \to \mathsf{Softmax}(2)$
- Training:
  Adam(lr=1e-3), weighted sparse CCE; 30 epochs; batch 2000 (train) / 1000 (val)
- Evaluation: Loss/Acc curves ( $\rightarrow$  ML\_learning.pdf); test inference  $\rightarrow \epsilon_{ML}$ ,  $R_{\pi,ML}$ ; P(e<sup>-</sup>) histogram ( $\rightarrow$  ML\_rejection.pdf)



# E/p Layer Scan

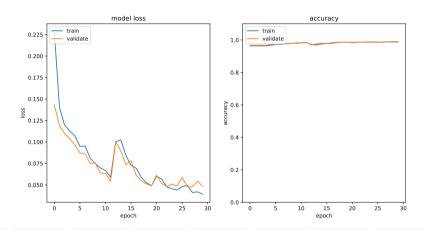


# E/p Results



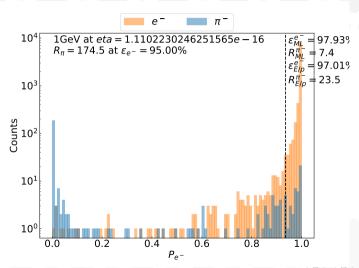
- Blue curve: chosen E/p threshold vs. max SciFi layer.
- ullet Orange points (log-scale): pion-rejection factor  $R_\pi$ .
- ullet Peak at layer 8 E/p>0.74 maximizes  $R_\pi$  while keeping 97

## Training Validation Curves





## ML Rejection Histogram



## **EICrecon Integration**

- Converting the keras model to an onnx model.
- Create C++ inference to integrate the E/p and ML algorithms properly into the EICrecon framework.
- Validation of the EICrecon inference algorithm using simulated data.

### Output

A working and reproducible ML-based PID module for ePIC.



### **Expected Impact**

- Improved particle identification in BIC.
- Application in analyses.
- Reusable training pipeline and inference module for future upgrades.



### **Conclusions**

■ We demonstrated a two-step PID workflow in the ePIC Barrel Calorimeter:

An optimized E/p cut (8 SciFi layers, E/p > 0.7403)  $\rightarrow$  97 A CNN-based secondary cut on shower "images"  $\rightarrow$  net 95

- Our 5-channel per-hit feature representation ( $e_{norm}$ ,  $r_0$ ,  $\Delta \eta$ ,  $\Delta \phi$ , layer-flag) successfully captures subtle EM vs. hadronic shower shapes.
- The VGG-v2 CNN learns layer—hit spatial correlations and boosts pion suppression by nearly an order of magnitude beyond E/p alone.

### References

- \( \https://doi.org/10.1016/j.nuclphysa.2022.122447 \range\)
- \( \text{https://eicweb.phy.anl.gov/Argonne\_EIC/becal/ai-reconstruction} \)

