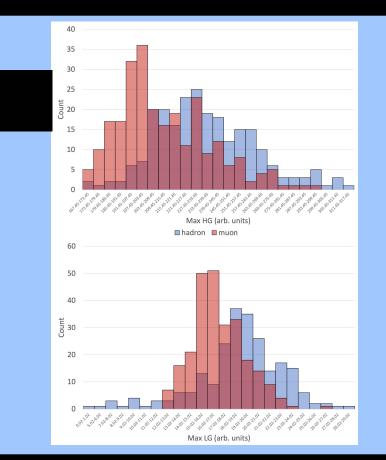

CAEN HG/LG Comparison with MIP plots, update Following from last week

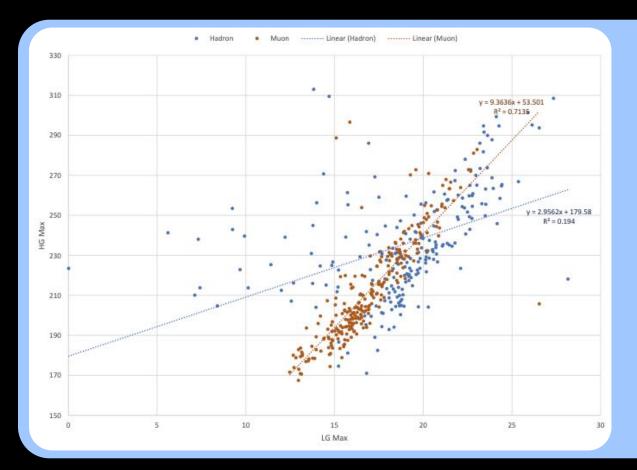
https://indico.bnl.gov/event/28925/


https://indico.bnl.gov/event/28925/contributions/110193/attachments/63611/109205/Investigating%20the%20High%20Gain%20vs%20Low%20Gain%20Discrepancy%20with%20MIP%20Plots%20-%2007_21_25.pdf

Adam Gibson, for Leah Shafer Valparaiso University LFHCal Test Beam Analysis Meeting

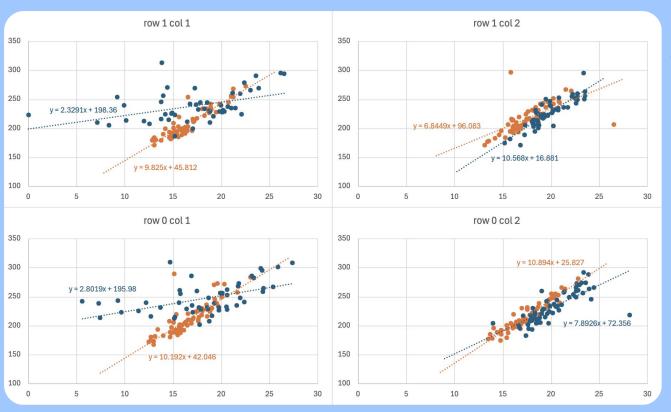
Reminder:

Using the "Max" from the four central tiles. Those four seemed cleanest for the hadron run, particularly the lower-right (row 0, col 2).


Reminder:

Investigating HG/LG discrepancy

We have the maxes of fitted MIP peaks from two types of runs


HG/LG ratio of the means of these max distributions

Hadrons -12.5259 Muons -12.5146

Oskar had suggested a 2D plot. For each tile, we plot HG Max vs. LG max

The muons are plotted in orange and the hadrons in blue

This graph shows both the hadrons (blue) and the muons (orange)

Muon Slopes: 9.824 ± 0.516 6.844 ± 0.998 10.191 ± 0.884 10.893 ± 0.428

Hadron Slopes: 2.329 ± 0.685 10.568 ± 0.797 2.802 ± 0.670 7.892 ± 0.889

This graph has the outliers removed Example fits:

Hadron (blue)

10.00 + -0.77

Muon (orange)

10.30 +- 0.48

10.89 +- 0.43

Intercept

25.8 +- 7.6

The hadron MIP peak is higher than the muon MIP peak, in HG *and* LG (as shown last week)

For the cleanest hadron cases, (third column of tiles) the HG/LG ratios are similar for hadron and muon runs (within about 5%?) and seem consistent within errors.

Summary

So, the MIPs aren't *that* standard of a candle. The peaks shift in both LG and HG.

And something seems different about this muon-tagged sample than the original (global?) analyses that showed significant changes in HG/LG ratio.

In the muon-tagged samples the shift seems modest, or absent.

(Various caveats apply: including, for this analysis we're looking at only the MIP Maxes.)