

OB Module Update

Jian Liu

on behalf of the module dev team

16 July 2025

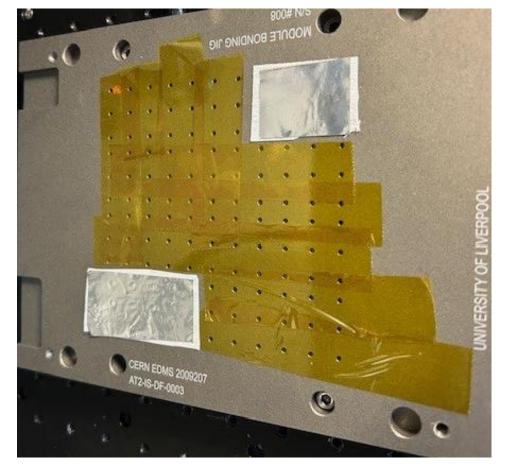
EIC UK WP1 Meeting

Outline

- Wire-bonding with diffuser
- Dummy parts
- Prototyping tools

Wire-bonding tests on LTU foils

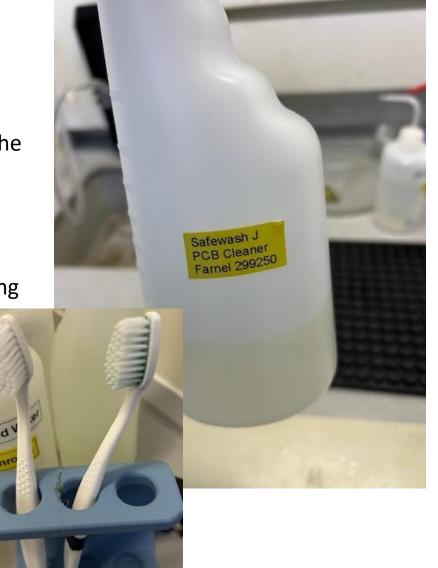
New tests: Vacuum with Diffuser



• As demonstrated by the Birmingham team, wire bonding performs better under vacuum when a diffuser is used

Two diffuser options were tested: a thick and a thin version \rightarrow to evaluate performance and compare with bonding

on a glued PCB surface



Cleaning

- A PCB cleaning agent, Safewash, was used to reduce contamination that could affect wire bonding
- A soft toothbrush was used to gently clean the surface and remove residues such as fingerprints
- The standard PCB cleaner used in previous tests was unsuitable due to the foil's fragility
- Delamination was observed in the multilayer foil during the cleaning process!

 Likely caused by the solvent, rinsing with deionised water, and drying with compressed air

Standard parameter

Standard settings (full details in backup slide):

Ultrasonic: 22%

Bond force: 22 cN

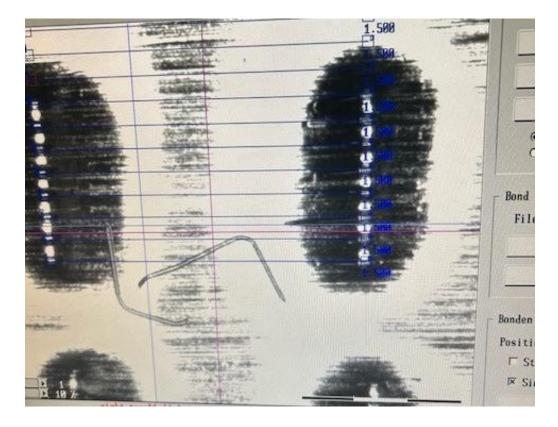
• Deformation: 40%

• Overtravel: 25 μm

- Each test was with 20 wires
- 100 µm wire spacing, 1500 µm bond length \rightarrow ~30° pull angle
- Two diffuser types were tested
 - Thick (0.225 mm) and Thin (0.068 mm)

• A gold reference board was bonded to establish baseline pull strength and standard deviation

Samples	Mean [g]	STDEV [g]	STDEV [%]	Max [g]	Min [g]	Peel
17	10.13	0.43	4%	10.98	9.31	0%
Failure typ	Samples	%				
0 = No Rec	0	0%				
1= Source	17	100%				
2= Dest He	0	0%				
3= Span Br	0	0%				
4= Source	0	0%				
5= Destina	0	0%				



Wire-bonding tests on LTU foils - Thick diffuser

Failures on single layer

- The highest failure rate occurred with the thick diffuser on single-layer foils
- Dark rings were observed around many bond feet, suggesting insufficient support, similar to issues seen in previous tests without proper gluing
- This may indicate suboptimal vacuum contact in that area

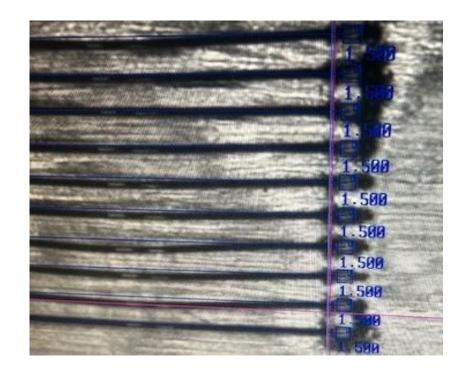
Pull test matrix

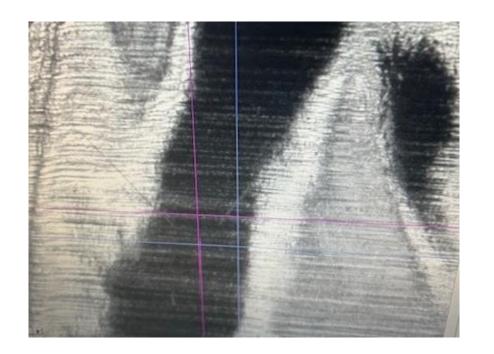
					Single Laye	er											Multi Layer	•				
					US % U	ltrasonic											US % UI	trasonic				
Mean		22	25	25	28	28	30	30	32	32		Mean		22	25	25	28	28	30	30	32	32
	22	7.3											22	11.47								
	22		6.83										22		10.9							
	25												25			10.19						
	25												25				10.87					
Ce	28											Ce	28					9.64				
dfo	28					Began to	fail at Wire	ebonding				dfo	28						10.42			
gon	30											Son	30							10.25		
CN) Bondforce	30											(CN) Bondforce	30								10.8	
O)	32											(CI	32									9.97
											Initial tes	<u>t</u>										
				;	Single Laye	er											Multi Layer					
					US % U	ltrasonic											US % UI	trasonic				
Std Dev		22	25	25	28	28	30	30	32	32		Std Dev		22	25	25	28	28	30	30	32	32
	22	1.18											22	0.83								
	22		1.79										22		1.24							
	25												25			1.65						
	25												25				1.19					
Ce	28											g G	28					1.59				
dfor	28					Began to	fail at Wire	ebonding				dfo	28						1.49			
CN) Bondforce	30		·									(CN) Bondforce	30							1.78		·
e e	30											9 (2	30								1.36	
(0)	32											(CI	32									1.84

- Single-layer foils failed catastrophically under test conditions
- Multi-layer foils yielded promising results, though some cases exhibited excessive standard deviation
- Tests were repeated to confirm reproducibility
 - Consistent outcomes were observed across different test areas
- Similar results for 30% and 50% deformation and 15 μm overtravel (details in backup slides)

	l				US % Ut	trasonic				
Mean		22	25	25	28	28	30	30	32	32
	22	11.11								
	22		11.78							
	25			11.1						
	25				11.95					
eg	28					11.11				
ffor	28						11.87			
iono	30							11.87		
(CN) Bondforce	30								12.07	
(C)	32									11.18
					Multi Layer					
					US % Ut	trasonic				
Std Dev		22	25	25	28	28	30	30	32	32
	22	2.24								
	22		0.43							
	25			0.79						
	25				0.34					
ıce	28					1.09				
affo	28						0.53			
(CN) Bondforce	30							0.68		
S S	30								0.58	
(C)	32									1.39

Repeated test




Wire-bonding tests on LTU foils - Thinner diffuser

Failures on single layer

- Significantly fewer wire failures occurred when using the thinner diffuser
- The previously observed dark regions around bond feet disappeared, suggesting improved vacuum conditions that support better bonding
- A residual shadow on the single-layer foil indicated incomplete vacuum flattening
- Maintaining flatness is challenging for single-layer foils due to their flexibility

Pull test matrix

12

					US % UI	trasonic									-		US % UI	trasonic				
Mean		22	25	25	28	28	30	30	32	32		Mean		22	25	25	28	28	30	30	32	32
	22	8.08											22	8.4								
	22		11.08										22		11.81							
ce	25			8.13								ce	25			11.81						
(CN) Bondforce	25				8.89							(CN) Bondforce	25				11.21					
Son	28					5.66						Son	28					10.15				
N B	28						7.94					S S	28						11.96			
0	30											O.	30							11.23		
	30								Failed				30								12.02	
	32												32									10.15
											Initial te	st										
					Single Laye						miciai ce						Multi Layer					
						trasonic											US % UI					
Std Dev		22	25	25	28	28	30	30	32	32		Std Dev		22	25	25	28	28	30	30	32	32
	22	2.13											22	1.72								
	22		0.92									_	22		1.26							\longrightarrow
orce	25			2.35								orce	25			1.03						\longrightarrow
ndfc	25				1.81							Jaffe	25				1.58					
Bor	28					1.65						Bor	28					1.22				
(CN) Bondforce	28						2.39					(CN) Bondforce	28						0.75			
9	30											9	30							1.18		
	30								Failed				30								1.03	
	32												32									1.81

- The thinner diffuser led to significant improvements over the thicker version, although single-layer failures still occurred at higher parameter settings
- Single-layer results showed mean pull strength below 9 g and standard deviation above 1.3 g considered as a failure
- Multi-layer foil performance remained good
- Results were validated with repeated testing

						110.0/ 11	ltrasonic					1						US % Ut					
-			- 00	0.5	0.5			- 00	- 00	00	- 00				- 00	05	0.5			- 00	- 00		- 00
-	Mean		22	25	25	28	28	30	30	32	32	P	Mean		22	25	25	28	28	30	30	32	32
		22	9.88										-	22	11.65								
	o	22		10.83										22		12.12							
) LC	25			8.53								, L	25			11.95						
_	Bondforc	25				9.74							(CN) Bondforce	25				11.96					
	- Ba	28					6.61						- B	28					11.77				
	(CN)	28						7.95					ĝ _	28						11.43			
	9	30							5.89				Θ L	30							10.99		
		30								5.66				30								12.16	
		32									5.68			32									11.04
L																							
						Single Laye												Multi Layer					
						US % U	ltrasonic											US % Ut	trasonic				
	Std Dev		22	0.5	25	28	28	30	30	32	32	St	Std Dev		22	25	25	28	28	30	30	32	32
			4-4-	25	25	20																	
		22	1.63	25	23	20								22	0.49								
Ī		22 22		1.4	25	20								22	0.49	0.34							
	<u>ف</u> 2				1.61	20							e)		0.49	0.34	0.47						
	Iforce	22				2.15							Iforce	22	0.49	0.34	0.47	0.73					
	ondforce	22 25					1.84						ondforce	22 25	0.49	0.34	0.47	0.73	1				
	I) Bondforce	22 25 25					1.84	2.94					I) Bondforce	22 25 25	0.49	0.34	0.47	0.73	1	1.41			
	(CN) Bondforce	22 25 25 28					1.84	2.94	2.1				(CN) Bondforce	22 25 25 28	0.49	0.34	0.47	0.73	1	1.41	1.38		
	(CN) Bondforce	22 25 25 28 28					1.84	2.94	2.1	1.95			(CN) Bondforce	22 25 25 28 28	0.49	0.34	0.47	0.73	1	1.41	1.38	0.75	
	(CN) Bondforce	22 25 25 28 28 28					1.84	2.94	2.1	1.95	1.32		(CN) Bondforce	22 25 25 28 28 30	0.49	0.34	0.47	0.73	1	1.41	1.38	0.75	1.99

16/07/2025 J. Liu Repeated test

30% and 50% deformations

		Single	Layer		,				Multi	Layer		
			US	5%						US	8%	
Mean		25	28	28	30		Mean		25	28	28	30
	25	7.32						25	10.47			
CN	25		9.51				CN	25		11.72		
CN	28			6.96			CN	28			10.3	
	28				8.76			28				11.43
					30%	deformation						
		Single	Layer						Multi	Layer		
			US	5%						US	5%	
Std Dev		25	28	28	30		Std Dev		25	28	28	30
	25	2.19						25	1.07			
ON	25		1.72				ON	25		0.72		
CN	28			2.34			CN	28			1.83	
	28				1.91			28				1.02

	-	Single	Layer	_	· ·			-		Layer		
			US	5%						US	5%	
Mean		25	28	28	30		Mean		25	28	28	30
	25	10.27						25	12.67			
CN	25		10.44				CN	25		12.63		
CIV	28			9.08			CIV	28			12.18	
	28				10.23			28				12.07
					50%	leformation						
		Single	Layer		• • • • • • • • • • • • • • • • • • • •				Multi	Layer		
			US	S%						US	5%	
Std Dev		25	28	28	30		Std Dev		25	28	28	30
	25	1.91						25	0.44			
CN	25		2.11				CN	25		0.44		
CN	28		·	1.93			CN	28			0.75	
	28				1.89			28				1.06

Single layer

- Improved bonding at 50% deformation compared to 30%, but the standard deviation remained outside acceptable limits
- Multi layer
 - Consistently achieved optimal results both in mean strength and standard deviation
 - Achieved the best at 50% deformation compared to the 30% and standard settings

15 μm overtravel

				Single Laye	r								Multi Laye	r			
					US%									US%			
Mean		25	25	28	28	30	30	32	Mean		25	25	28	28	30	30	32
	22	10.67								22	11.99						
	25		9.42							25		10.63					
	25			9.24						25			12.06				
CN	28				8.27				CN	28				11.89			
	28					8.58				28					11.23		
	30						Overtre	vel Issue		30						9.4	
	30						Overtra	vecissue		30							10.74
			;	Single Laye	r								Multi Laye	r			
					US%									US%			
Std Dev		25	25	28	28	30	30	32	Std Dev		25	25	28	28	30	30	32
	22	1.03								22	0.86						
	25		1.45							25		1.55					
	25			2.1						25			0.55				
CN	28				1.54				CN	28				0.9			
	28					2.33				28					1.28		
	30						Overtra	vel Issue		30						1.57	
	30						Overtra	vectssue		30							1.33

- Overtravel issues persisted at higher parameter settings
- Multi-layer foils continued to deliver strong performance, consistent with previous observations

Wire-bonding tests on LTU foils - Comparisons

Parameter Matrix

	Glı	ued on PCI	В	Thic	ker Diffuse	er	Thir	nner Diffus	er	Gli	ued on PCI	3	Thic	ker Diffuse	er	Thir	ner Diffus	er
	Si	ngle Layer		Si	ngle Layer		Si	ingle Layer		Μ	1ulti Layer		M	1ulti Layer		M	lulti Layer	
Parameters	No of Wires	Mean	Std Dev	No of Wires	Mean	Std Dev	No of Wires	Mean	Std Dev	No of Wires	Mean	Std Dev	No of Wires	Mean	Std Dev	No of Wires	Mean	Std Dev
22US% 22CN	20	11.18	0.69	17	7.3	1.18	17	9.88	1.63	19	10.73	1.77	19	11.11	2.24	15	11.65	0.49
25US% 22CN	20	11.46	0.18	17	6.83	1.79	18	10.83	1.4	20	10.45	1.32	20	11.78	0.43	20	12.12	0.34
25US% 25CN	19	11.26	0.59				20	8.53	1.61	19	11.04	0.67	20	11.1	0.79	20	11.95	0.47
28US% 25CN	20	11.21	0.62				20	9.74	2.15	19	11.03	0.25	20	11.95	0.34	20	11.96	0.73
28US% 28CN	20	11.33	0.36				12	6.61	1.84	20	11.04	0.88	20	11.11	1.09	20	11.77	1
30US% 28CN	20	11.04	0.8		Failed		17	7.95	2.94	20	11.06	0.69	20	11.87	0.53	20	11.43	1.41
30US% 30CN	16	10.49	0.82				17	5.89	2.1	20	11.03	0.49	20	11.87	0.68	20	10.99	1.38
32US% 30CN	20	10.99	0.65				13	5.66	1.95	20	10.8	0.82	20	12.07	0.58	20	12.16	0.75
32US% 32CN	20	10.66	0.77				6	5.68	1.32	20	9.45	1.2	20	11.18	1.39	20	11.04	1.99

15 μm Overtravel

	Glı	ued on PCI	3	Thic	ker Diffus	er	Thir	ner Diffus	er	Gl	ued on PC	3	Thic	ker Diffus	er	Thin	ner Diffus	er
	Si	ngle Layer		Si	ingle Layer		Si	ngle Layer		N	1ulti Layer		٨	1ulti Layer		M	lulti Layer	
Parameters	No of Wires	Mean	Std Dev	No of Wires	Mean	Std Dev	No of Wires	Mean	Std Dev	No of Wires	Mean	Std Dev	No of Wires	Mean	Std Dev	No of Wires	Mean	Std Dev
25US% 22CN	20	11.21	0.47		Failed		18	10.67	1.03	20	11.48	0.44	17	11.27	1.19	19	11.99	0.86
25US% 25CN	20	10.89	0.88	20	8.09	1.69	20	9.42	1.45	20	10.96	1.09	20	11.93	0.22	20	10.63	1.55
28US% 25CN	20	11.34	0.39	18	8.97	1.1	17	9.24	2.1	20	11.34	0.65	20	11.94	0.63	20	12.06	0.55
28US% 28CN	20	10.79	0.94	11	3.8	1.09	15	8.27	1.54	20	11.09	0.43	17	10.98	1.58	20	11.89	0.9
30US% 28CN	20	11.06	0.82				15	8.58	2.33	19	11.09	0.64				20	11.23	1.28
30US% 30CN	20	11.3	0.65		Failed			Failed		18	10.82	0.76		Failed		17	9.4	1.57
32US% 30CN	20	11.25	0.38					raiteu		20	11.06	0.66				11	10.74	1.33

30% & 50% deformation

30% Deformation

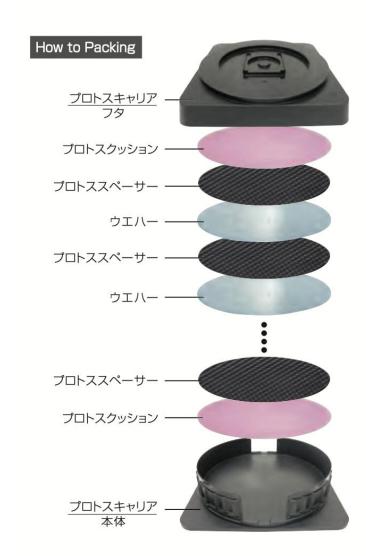
	Gl	ued on PC	3	Thic	ker Diffus	er	Thin	ner Diffus	er	Gl	ued on PCE	}	Thic	ker Diffuse	er	Thin	ner Diffus	er
	S	ngle Layer		Si	ngle Layer		Si	ngle Layer		N	1ulti Layer		M	lulti Layer		M	ulti Layer	
Parameters	No of Wires	Mean	Std Dev	No of Wires	Mean	Std Dev	No of Wires	Mean	Std Dev	No of Wires	Mean	Std Dev	No of Wires	Mean	Std Dev	No of Wires	Mean	Std Dev
25US% 25CN	20	10.98	0.94				15	7.32	2.19	19	10.44	1.34	20	10.62	1.26	20	10.47	1.07
28US% 25CN	20	11.39	0.26		Failed		18	9.51	1.72	20	11.12	0.79	20	11.78	0.55	20	11.72	0.72
28US% 28CN	20	10.71	0.79		railed		14	6.96	2.34	20	10.33	0.91	20	11.71	0.7	20	10.3	1.83
30US% 28CN	20	11.21	0.87				18	8.76	1.91	20	11.03	0.57	20	11.91	1.03	20	11.43	1.02

50% Deformation

	Glı	ued on PCE	3	Thic	ker Diffuse	er	Thin	ner Diffus	er	Glı	ed on PCE	3	Thic	ker Diffuse	er	Thir	ner Diffus	er
	Si	ngle Layer		Si	ngle Layer		Si	ngle Layer		M	ulti Layer		M	ulti Layer		M	1ulti Layer	
Parameters	No of Wires	Mean	Std Dev	No of Wires	Mean	Std Dev	No of Wires	Mean	Std Dev	No of Wires	Mean	Std Dev	No of Wires	Mean	Std Dev	No of Wires	Mean	Std Dev
25US% 25CN	20	11.14	0.76	12	4.32	1.34	20	10.27	1.91	19	11.39	0.4	20	12.18	0.28	18	12.67	0.44
28US% 25CN	20	11.24	0.86	5	3.4	1.05	20	10.44	2.11	20	11.42	0.28	20	12.52	0.38	19	12.63	0.44
28US% 28CN	20	10.77	1.01		Eallad		19	9.08	1.93	19	11.07	0.66	20	12.14	0.68	20	12.18	0.75
30US% 28CN	20	10.58	1.04		Failed			10.23	1.89	18	11.05	0.63	20	12.14	0.6	20	12.07	1.06

Summary – wire-bonding

- Bonding quality was superior when foils were glued to a PCB, likely due to the added mechanical stability
- The thinner diffuser significantly improved vacuum-assisted bonding, though some stability challenges remain
- Multi-layer foils consistently offered easier and more reliable bonding, regardless of method
- The study demonstrated that acceptable mean strength and standard deviation values can be achieved
- Next steps:
 - Investigate further improvements for single-layer foils under vacuum. Any suggestions are welcome
 - Consider adjusting touchdown force or tail length
 - Comparative tests with and without cleaning
 - Comparative tests with alternative wire materials

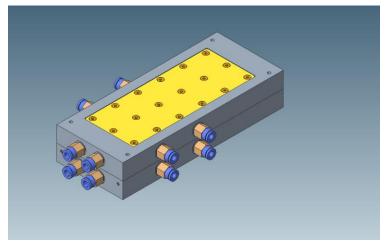


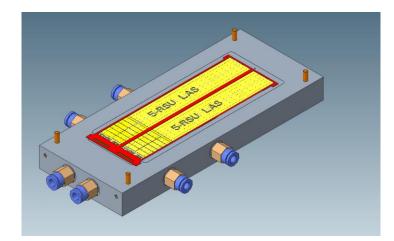
Dummy parts

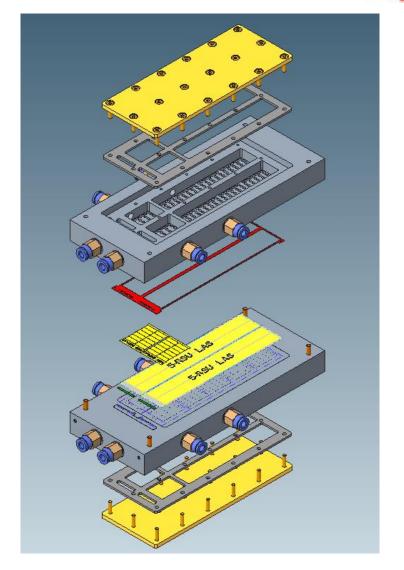
Dummy parts

ePi**Ç**

- Packing charges are included in the quote
- Shipping will be billed separately at USD 350 per shipment
- Feedback from the supplier: "The current packaging is expected to be sufficient; we routinely ship samples internationally without issues."

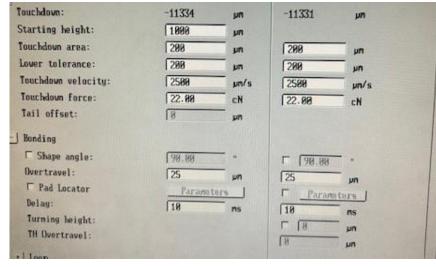


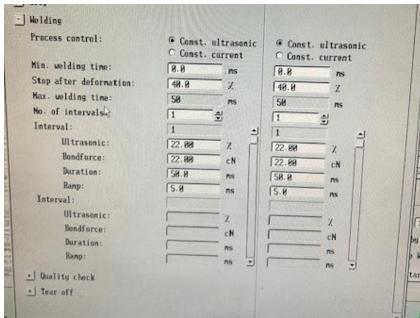

Prototyping tools

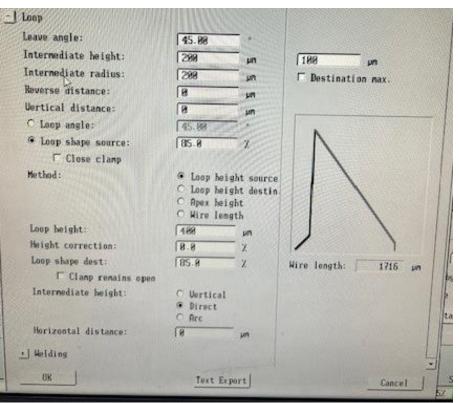

Module tooling – Jig

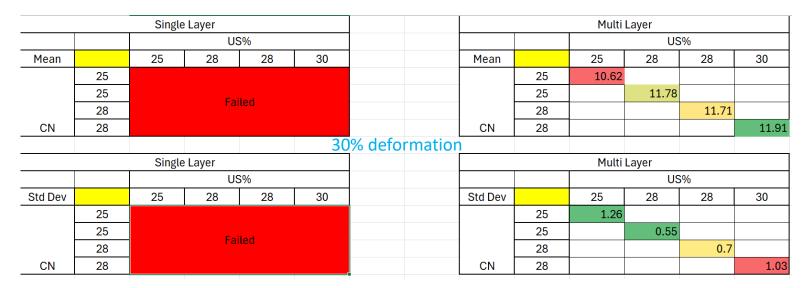
ePi

- Jig and module assembly timeline
 - **Jig design** expected to be completed by **the end of August** @ Daresbury
 - Jig manufacturing planned for August September @ Liverpool
 - Module assembly practice expected to start in October @ Birmingham
- Outstanding items
 - Dummy FPC: should not be difficult to obtain
 - **Dummy silicon**: existing pieces likely unavailable for module assembly
 - Dummy AncASIC: can the order be placed as soon as possible?
 - Dummy LAS: can the order be placed in September?
 - Are there any other contributors for this dummy silicon production?



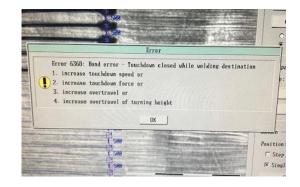



Backup



30% and 50% deformations

		Single	Layer						Multi	Layer				
			US	%					US%					
Mean		25	28	28	30		Mean		25	28	28	30		
	25	4.32						25	12.18					
	25		3.4					25		12.52				
	28			Dogon	to Foil			28			12.14			
CN	28			began	to Fail		CN	28				12.14		
					50	% deformation								
		Single	Layer						Multi	Layer				
			US	%			US%							
Std Dev		25	28	28	30		Std Dev		25	28	28	30		
	25	1.34						25	0.28					
	25		1.05					25		0.38				
	28			Davan ta Fail				28			0.68			
CN	28 Began to Fail		rtorall		CN	28				0.6				


- Single layer
 - Improved bonding success at 50% deformation compared to 30%
- Multi layer
 - Achieved the best mean and standard deviation at 50% deformation

15 μm overtravel


Single Layer									Multi Layer											
		US%										US%								
Mean		25	25	28	28	30	30	32		Mean		25	25	28	28	30	30	32		
	22										22	11.2								
	25		8.09								25		11.93							
	25			8.97							25			11.94						
	28				3.8						28				10.98					
	28										28									
	30					Began to	Fail in Wir	ebonding			30					Began to	Fail in Wir	ebonding		
CN	30									CN	30									
	Single Layer									Multi Layer										
		US%										US%								
Std Dev		25	25	28	28	30	30	32		Std Dev		25	25	28	28	30	30	32		
	22										22	1.19								
	25		1.69								25		0.22							
	25			1.1							25			0.63						
	28				1.09						28				1.58					
	28										28									
	30					Began to	Fail in Wir	ebonding		30						Began to Fail in Wirebonding				
CN	30									CN	30									

- The same trend persisted: single-layer foils performed poorly, while multi-layer foils showed good outcomes
- Both configurations began to fail with higher parameter settings

Deformations

22US%, 22CN 32US%, 32CN

- Both diffuser types exhibited similar deformation patterns
- Deformation—defined as the width of the bond foot—varied with time depending on parameter settings
- At lower settings (22% ultrasonic, 22 cN force), deformation required more time to reach target values
- At higher settings (32% ultrasonic, 32 cN force), deformation was achieved more quickly

Wire comparison

- Used
 - CCC: Al-1%Si, 25 μm, El % 1-4, TS 15-18g
- Currently using
 - Heraeus: AlSi-M, 25 μ m, EL > 1%, BL 15-17 cN
- Planned (Not provided by Accelonix)
 - Tanaka TABN Type aluminium wire (Al–1%Si with nickel doping, 25 μm)
- Alternative (Accelonix in stock)
 - Heraeus H74-41 (around £400): Aluminum Wire 25μm, 100m, AlSi-S, EL 1,0-4,0%, BL 14-16g, 2x1" spool
 - Plan to use this soft wire for performance comparison

Quotes from Nanosystems JP

- Proposed processes
 - Procure Silicon wafer 625um
 - Photomask fabrication
 - 600nm Al patterning and etching
 - Backgrinding to 50um
 - Dicing & Chip tray packing
 - Shipping

- Option 1: 50 5RSU LAS + 500 AncASIC = 19900 + 11900 = 31800 USD
 - 20 5RSU LAS: 12900 USD
 - 50 5RSU LAS: 19900 USD
 - 20 5RSU LAS + 20 6RSU LAS: 19900 USD
 - 50 5RSU LAS + 50 6RSU LAS: 27900 USD
 - 500 800 AncASIC: 11900 USD
- Option 2: 41400 USD \rightarrow 41400 31800 = 9600 USD for additional 50 babyLAS
 - ~50 5RSU LAS + ~50 1RSU babyLAS
 - 500 600 AncASIC
- Option 3: 46390 USD
 - ~50 6RSU LAS + ~50 5RSU LAS + ~30 1RSU babyLAS (possibly a few more)
 - 500 600 AncASIC

- Comments from the supplier
 - First order requires mask fabrication and other startup engineering costs, subsequent ordered chips will be comparatively cheaper
 - Manufacturing larger quantities in a single batch is more cost-effective than producing them separately
- Lead time
 - Approximately 2 to 2.5 months
 - Their production schedule is filling up, so early confirmation would help secure a favorable slot
 - They propose moving the order to July or August to enable a faster turnaround

- Is it possible to place the order for AncASIC in July/August?
- Is it possible to place the order for LAS in September?