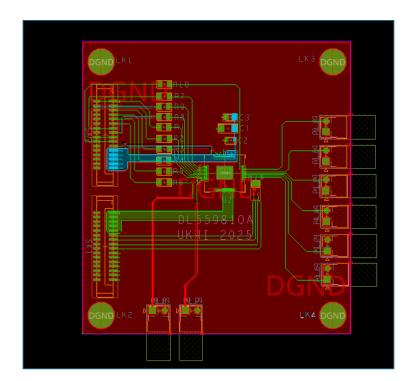
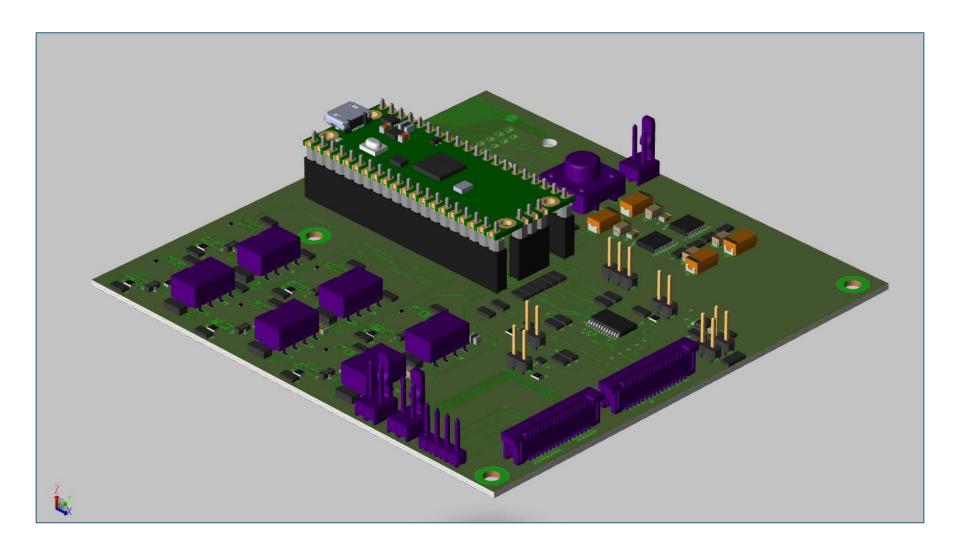
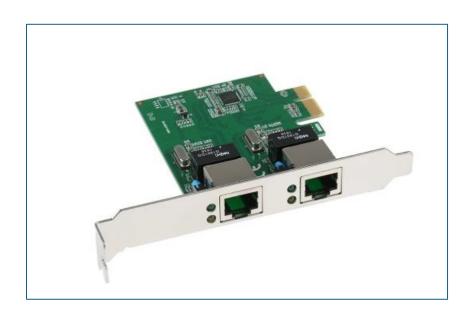

MPW2-SLDO test system update

A.Hill


20250704


SLDO Carrier Board Layout

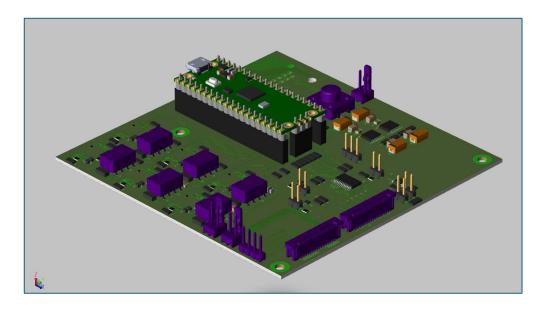
Andrew Hill (T2) STFC Daresbury Laboratory Keckwick Lane Daresbury Warrington Cheshire WA4 4AD



SLDO Control Board Layout

Andrew Hill (T2) STFC Daresbury Laboratory Keckwick Lane Daresbury Warrington Cheshire WA4 4AD

Communication

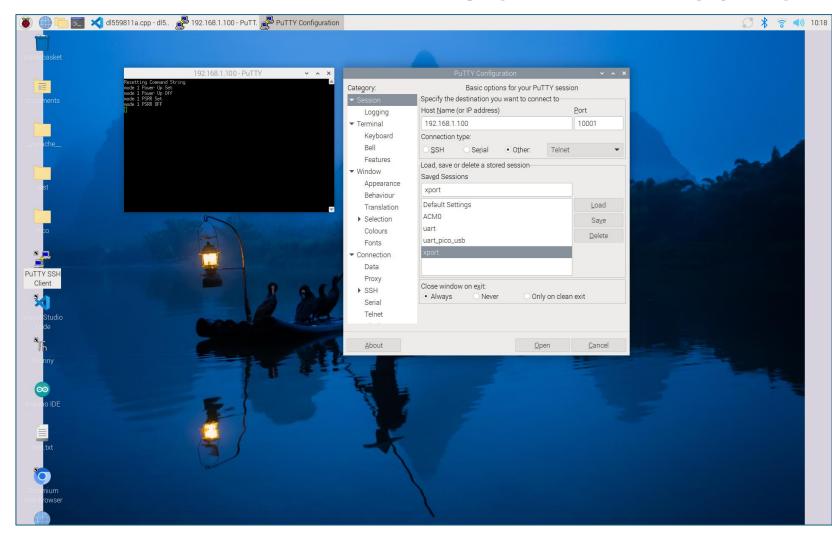


P.C Ethernet Card:-

IP Address: 192.168.1.103
Subnet Mask 255.255.255.0
Default Gateway 0.0.0.0
This is required for initial configuration of Lantronix Ethernet Socket on the control board.

Initial communication will be a LAN configuration.

If a network connection is required, then DHCP can be used along with the supplied MAC address.


Interface Ethernet Sochet:-

IP Address: 192.168.1.100 Port 10001

Subnet Mask 255.255.255.0 Default Gateway 0.0.0.0

Andrew Hill (T2)
STFC Daresbury Laboratory
Keckwick Lane
Daresbury
Warrington
Cheshire
WA4 4AD

Communication

Opening a PuTTY Telnet Session gives you access to The command line interface of the control board.

Alternatively:- open a socket in Python and communicate That way.

Andrew Hill (T2) STFC Daresbury Laboratory Keckwick Lane Daresbury Warrington Cheshire WA4 4AD

Command Line Interface

	Command	Function	
	0x01 1	Realy 1 ON	
	0x01 2	Relay 1 OFF	
	0x02 1	Relay 2 ON	
	0x02 2	Relay 2 OFF	
		,	
	0x03 1	Relay 3 ON	
	0x03 2	Relay 3 OFF	
	0x04 1	Relay 4 ON	
	0x04 2	Relay 4 OFF	
	0X0 4 2	Relay 4 Of f	
	0x05 1	Relay 5 ON	
	0x05 2	Realy 5 OFF	
	0x06 1	Relay 6 ON	
	0x06 2	Relay 6 OFF	
researved	0x07 1	DIS_LATCH_Q_N ON	
researved	0x07 2	DIS_LATCH_Q_N OFF	
	0x08 1	SEL_EXT_DISABLE ON	
	0x08 2	SEL_EXT_DISABLE OFF	
	0x09 1	EXT_DISABLE ON	
	0x09 2	EXT_DISABLE OFF	
	0x10 1	ACTIVATE_OCP_N ON	
	0x10 2	ACTIVATE_OCP_N OFF	
	0x11 1	RESET_OCP_N ON	
	0x11 2	RESET OCP N OFF	
	0x12 1	CONTROL 4 ON	
	0x12 2	CONTROL_4 OFF	
	0x13 1	CONTROL 3 ON	
	0x13 1	CONTROL_3 OFF	
	0A10 Z	CONTROL OF T	
	0x14 1	CONTROL_2 ON	
		_	
	0x14 2	CONTROL_2 OFF	
	0.45.4	CONTROL 1 ON	
	0x15 1	CONTROL_1 ON	
	0x15 2	CONTROL_1 OFF	
	0x16 1	CONTROL_0 ON	
	0x16 2	CONTROL_0 OFF	

Command 0x26 1 reads the Pico ADC channel Connected to an onboard temperature sensor. The temperature is selectable between degrees 'C' And degrees 'F'.

_			
	0x17 1	Mode 1 Power Up set	
	0x17 2	Mode 1 Power up off	
	0x18 1	Mode 1 PSSR set	
	0x18 2	Mode 1 PSSR off	
	0x19 1	Mode 1 Ramp Rate set	
	0x19 2	Mode 1 Ramp Rate off	
	0x20 1	Mode 1 DAC Scan set	Ramp control bits 0-31
	0x20 2	Mode 1 DAC Scan set	
	0x21 1	Mode 1 Irradiation set	
	0x21 2	Mode 1 Irradiation off	
	0x22 1	Mode 0 Power Up And Overcurrent Test set	
	0x22 2	Mode 0 Power Up And Overcurrent Test off	
	0x23 1	researved	
	0x23 2	researved	
	0x24 1	researved	
	0x24 2	researved	
	0x25 1	researved	
	0x25 2		

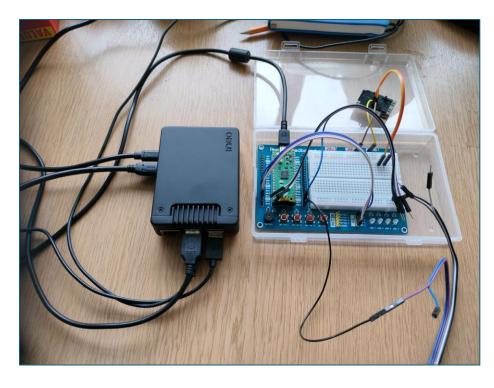
Software has been developed to create a Command Line Interface.

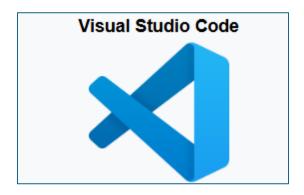
The Command Line Interface gives independent control of the digital lines connected to the Asic.

The Command Line Interface gives independent control of the Load / Capacitance that will be connected to the output of the Asic (regulator).

0x01 to 0x16 commands are for Individual control.

0x17 to 0x22 commands are test specific:-


- Mode 1 Power Up.
- Mode 1 PSRR.
- · Mode 1 Ramp Rate.
- Mode 1 DAC Scan.
- Mode 1 Irradiation.
- Mode 0 Power Up And Overcurrent.


All of these are outputs from the microprocessor to inputs of the Asic.

All of the Analogue signals from the Asic are monitored externally however there is one output from the asic (dis_latch_qn) that indicates that overcurrent shutdown has been triggered.

In the event that dis_latch_qn is triggered, it will cause an interrupt to occur within the microprocessor and enable the event to be captured and reported whilst normal operation continues.

Development Kit.

Code in 'C' / 'C++' utilising Microsoft's Visual Studio Code on the Raspberry Pi 5, downloaded to the Raspberry Pi Pico 2.

To Do

Although I have initialised an I2C component within the microcontroller I have not yet implemented The code required to adjust the digital potentiometer (R3) used on the control board.

It is difficult to do without an actual device.

When implemented this will result in expanding the command codes and it will be adjustable From the command interface.