

Open-Source RAG pipeline for the EIC

Tina J Jat

B.Sc. (Hons.) Data Science and Analytics M. S. Ramaiah University of Applied Sciences

Supervisor: Dr. Tapasi Ghosh

Outline

- ➤ Objective
- Methodology
- Overview of prior work (AI4EIC Group)
- > Schematic Representation of the pipeline
- Comparison of tools and frameworks
- > Results
- > Challenges and observations
- > Conclusions and Future Work

Objective

- ➤ Develop an in-house RAG-based QA system using open-source models and frameworks.
- Comparison study with respect to proprietary model.
- > To identify a cost-effective and performant alternatives, especially in resource-constrained or offline environments.

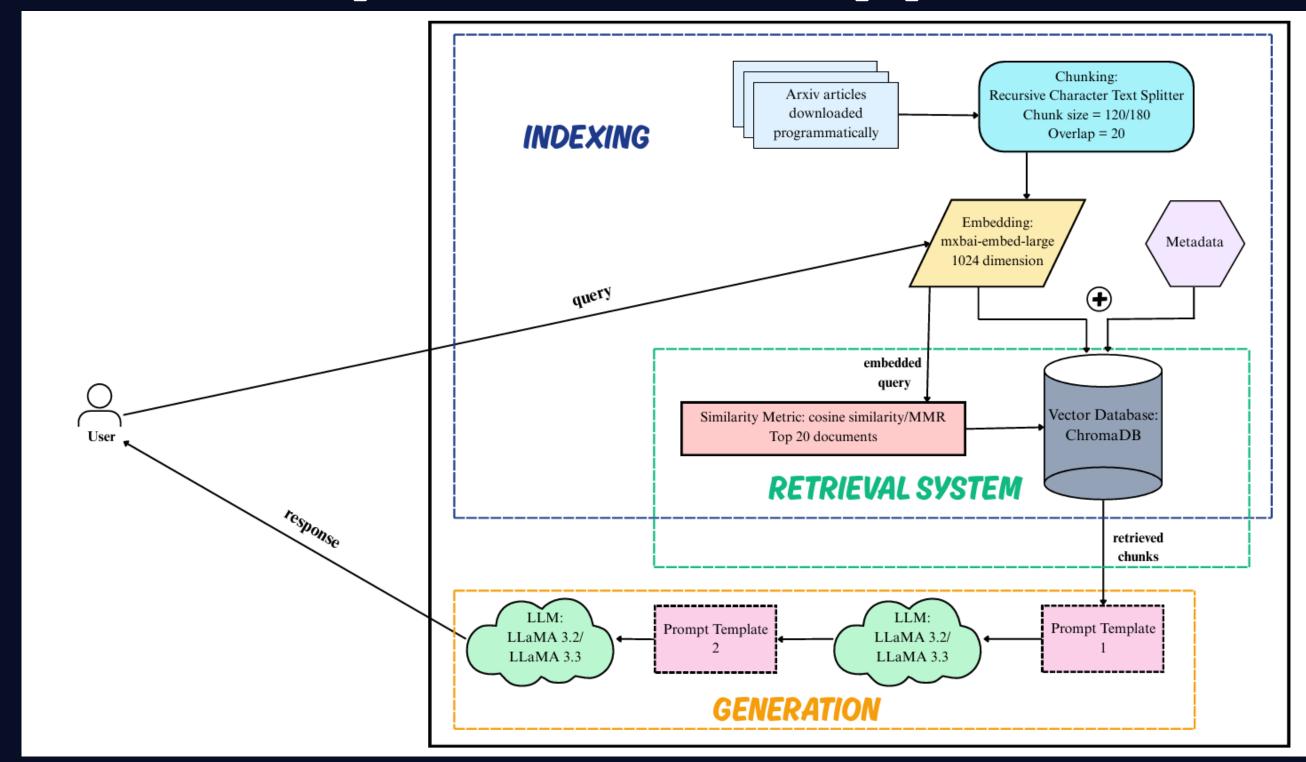
Methodology

- Phase I: Understanding Prior Work and defining the problem statement
- 2 Phase II: Exploration of SOTA tools
- 3 Phase III: Building Knowledge Base
- 4 Phase IV: Implementation of QA System
- 5 Phase V: Evaluation and Result Analysis

Overview of the prior work (AI4EIC Group)

- RAG-based Q&A system been developed with the proprietary OpenAl models.
- > Database: 178 EIC-related arxiv articles dated after 2021
- ➤ Embedding model: OpenAl's text-embedding-ada-002 (dimension 1536)
- Vector DB: PineCone (API)
- Language Model used: GPT-3.5 (gpt-3.5-turbo-1106)

Schematic Representation of the pipeline



Comparison of Tools and Frameworks Used:

	Purpose	Prior work	Present work
Embedding Model	To convert the text into numerical representations called vector embeddings	OpenAl's text- embedding-ada-002 Dimension: 1536	Mixedbread Al's mxbai-embed-large Dimension: 1024
Vector Database	For storing the context data in the form of vector embeddings.	PineCone (Cloud)	ChromaDB (in-house Database)
Language Model	Generate output answer for a given input prompt	GPT-3.5 (gpt-3.5- turbo-1106)	Quantized LLaMA 3.2 (3B parameters) and LLaMA 3.3 (70B parameters)

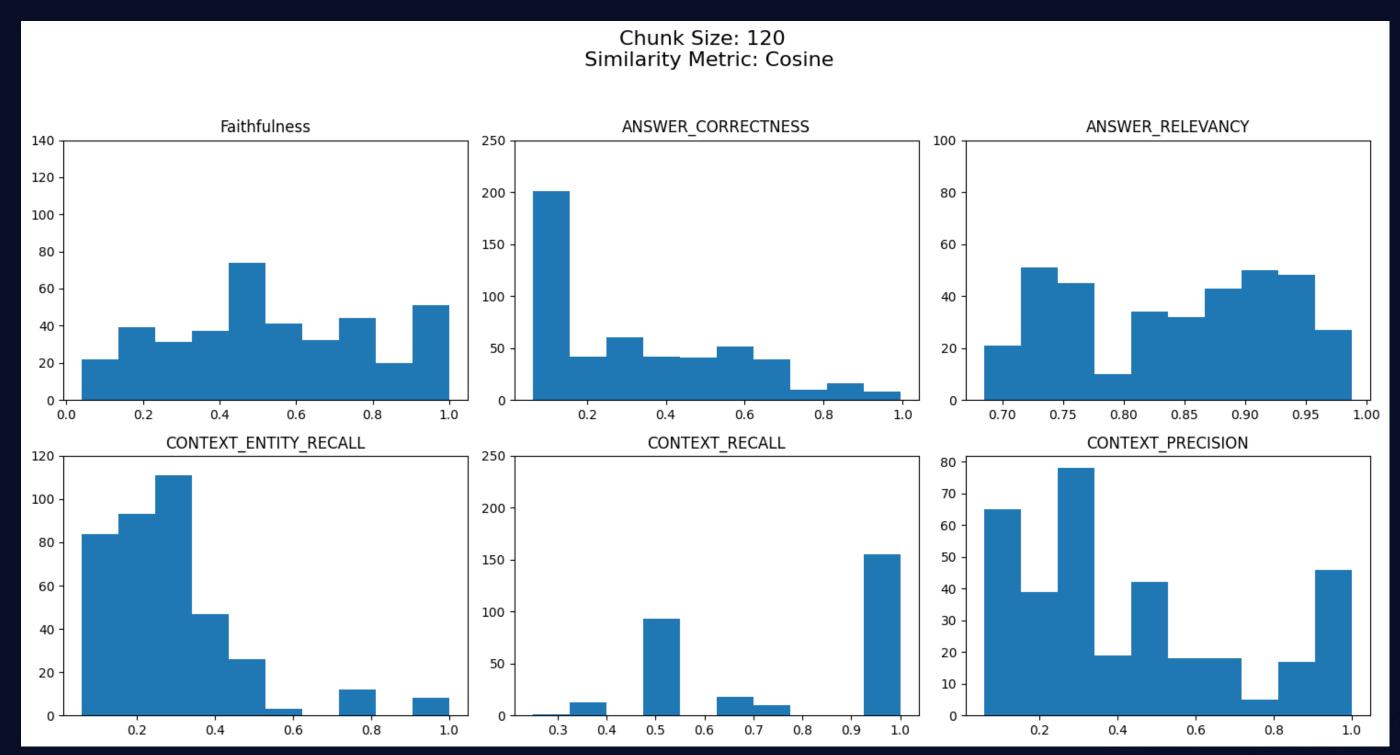
Context and strategy Details:

- > Vector Database: 178 EIC-related arxiv articles in PDF format.
- > Benchmark dataset: To validate the performance of the application
 - Al Generated and validated by domain expert
- > Chunk size: 120 and 180
- Retrieval Strategy: Cosine Similarity and Maximum Marginal Relevance (MMR)
- ➤ LLMs choice: Quantized LLaMA 3.2 (3B parameters) and LLaMA 3.3 (70B parameters)
- Evaluation Metrics: Faithfulness, Answer Relevancy, Answer Correctness, Context Entity Recall, Context Recall, Context Precision.

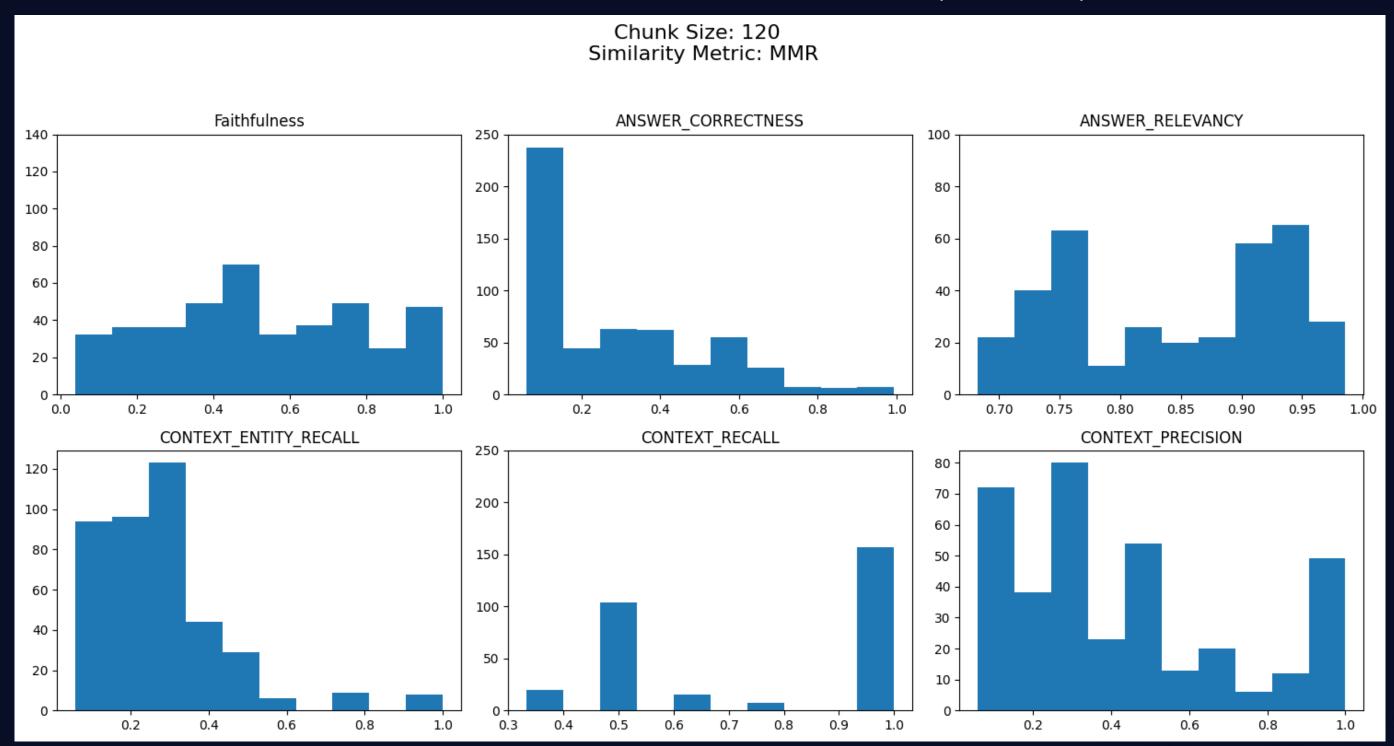
Results: Latency Comparison

Statistic	LLaMA 3.2	LLaMA 3.3
Mean	14.30	226.46
Standard Deviation	9.36	75.54
Minimum	2.95	90.91
25% (Q1)	8.30	175.14
Median	11.33	215.88
75% (Q3)	17.31	266.66
Maximum	59.78	568.20

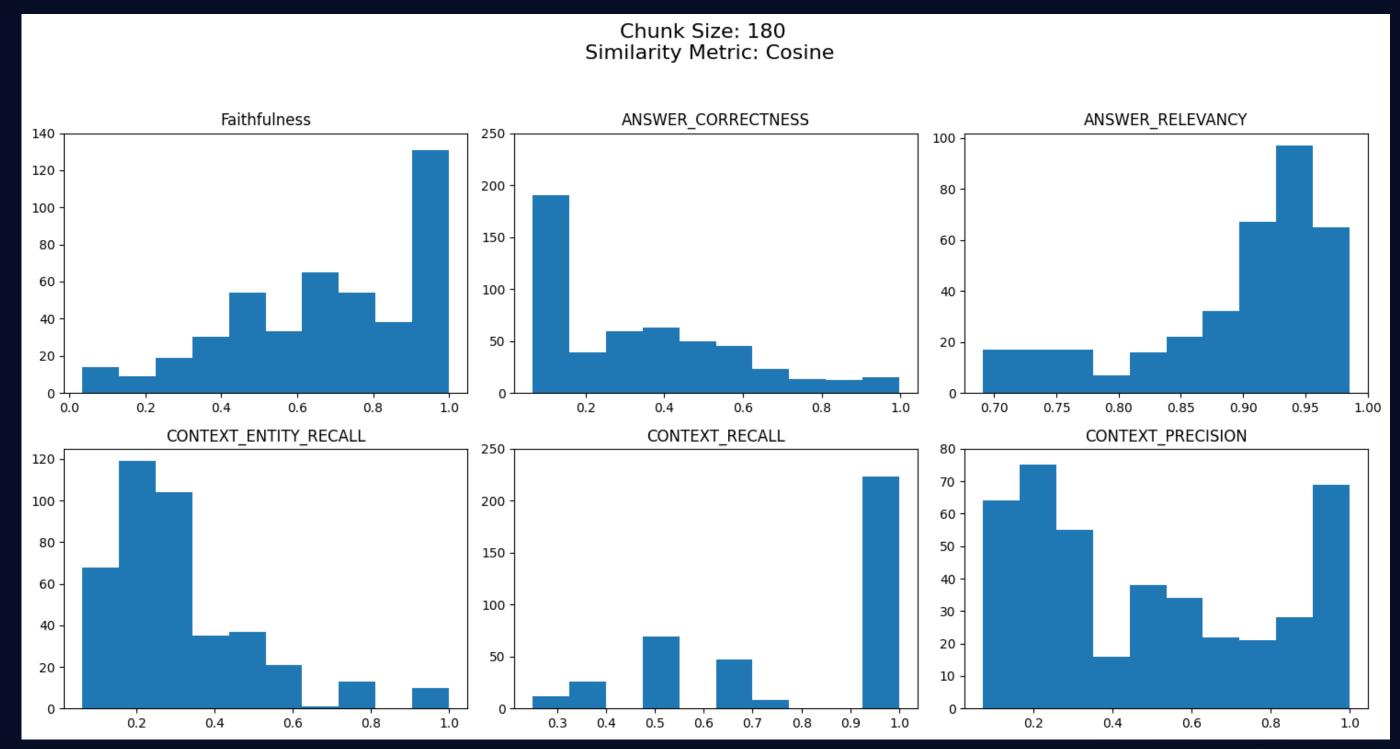
Results: RAGAS Evaluation Scores



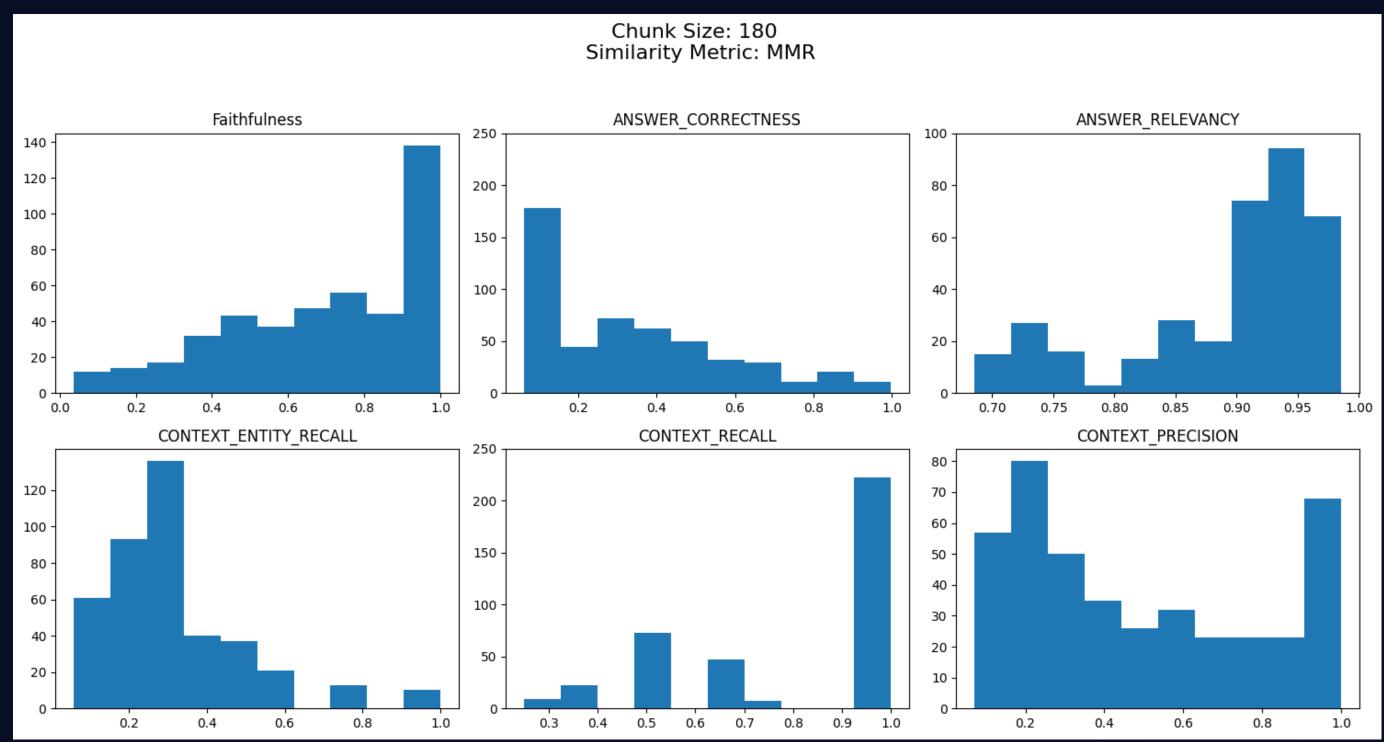
Results: RAGAS Evaluation Scores (Cont.)



Results: RAGAS Evaluation Scores (Cont.)



Results: RAGAS Evaluation Scores (Cont.)



Challenges

- > The system occasionally generates answers based on the model's intrinsic parametric knowledge rather than grounding them solely in the retrieved database context.
- For some questions, the generated response contains repetition of same answer multiple times. This is also reflected with higher latency.

Observations

- The latency of context retrieval varies depending on the chosen LLM model.
- The system experiences a slight reduction in answer correctness and entity recall but performs well in terms of faithfulness and relevancy, notably with a 180-character chunk size and MMR retrieval strategy.

Conclusions

- > RAG-based QA system built entirely on open-source tools can offer competitive performance for EIC-related document understanding.
- ➤ The prior work employed proprietary OpenAI GPT-3.5 models with over 100 billion parameters.
- > The current system leverages significantly smaller models (3B parameters) that reduce memory footprint and latency.
- ➤ These findings highlight a practical trade-off: large-scale proprietary models offer superior accuracy, while lightweight open models can provide cost-effective and performant alternatives.

Future Work

- > Extend the database with multimodal formats like images, ppt, etc.
- Build an Agentic RAG

Acknowledgements:

Dr. Karthik Suresh

Dr. Cristiano Fanelli

Thank You

Backup Slides

Results – Latency

Statistic	120	180	Statistic	Cosine	MMR
Mean	0.11	0.11	Mean	0.11	0.12
Std Dev	0.02	0.02	Std Dev	0.02	0.01
Min	0.08	0.07	Min	0.07	0.08
25% (Q1)	0.10	0.10	25% (Q1)	0.10	0.11
Median	0.11	0.11	Median	0.10	0.12
75% (Q3)	0.12	0.12	75% (Q3)	0.11	0.12
Max	0.25	0.14	Max	0.25	0.14

(a) Chunk Size: 120 vs 180

(b) Similarity Metric: Cosine vs MMR

Statistic	LLaMA 3.2	LLaMA 3.3
Mean	14.3	226.46
Std Dev	9.36	75.54
Min	2.95	90.91
25% (Q1)	8.30	175.14
Median	11.33	215.88
75% (Q3)	17.31	266.66
Max	59.78	568.20

(c) Language Model: LLaMA 3.2 vs LLaMA 3.3

Table 1: Descriptive statistics of latency across different configurations