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Introduction



Sign problem
A large system with a complex action:
(x=(x') e R" : dynamical variable (N : #DOF)

S(x) =ReS(x)+iImS(x) e C : complex action
O(X) : observable

N

Boltzmann weight

(O)==E

Ldx e "™ O(x) jRN dx e~ ReSMg=1IMS () (1 (x)

e.g. scalar field
x' <> @(t,X)

S(x) <> S[¢4] = Idtdsx[%(atqj)z 4 }
dx=[]dx' <>[dg]=]]dg(t x)
i t.X

J‘RN dx e—S(x) J‘RN dx e—ReS(x)e—i ImS (x)

highly oscillatory
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Sign problem

A large system with a complex action: e.g. scalar field
x' <> @(t,X)

S(x) <> S[¢4] = Idtdsx[%(at@z 4 }
dx=[]dx' <>[dg]=]]dg(t x)
i t.X

(x=(x') e R" : dynamical variable (N : #DOF)
S(x) =ReS(x)+iImS(x) e C : complex action
O(X) : observable

N

Boltzmann weight

’ iy dx e=S™ O(X) J'RN dx e~ReS()g=iimS(x) O(x)
(0) = _

highly oscillatory

I dx oS J‘ dx o~ ReS(X) g=1ImS(x)
= R
—ReS(x) ,—iIm$S ~ReS .
g dx e ReS()g-ilm (X)O(X)/JRN dx e~ ReS() ) <e_.|m3(x)0(x)>rEWt ) a-O(N)
J‘RN dx e~ ReS(x)a-1ImS(x) /J‘RN dx eReS( <e—|ImS(x)> - O(M)

rewt (: O(l))
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Sign problem

A large system with a complex action: e.g. scalar field
x' <> @(t,X)

S(x) <> S[¢4] = Idtd3x[%(8t¢)2 4 }
dx=[]dx' <>[dg]=]]dg(t x)
i t.X

(x=(x') e R" : dynamical variable (N : #DOF)
S(x) =ReS(x)+iImS(x) e C : complex action
O(X) : observable

N

Boltzmann weight

cdxe M O(x) J'RN dx e RESXgTIMS0) 1 (y)

(O)==E = _ highly oscillatory
-S(x) —ReS(x) o—1ImS(x)
IRN dx e IRN dx e e
X e‘Res(")e"'”‘S(X)(’)(x)/jRN dx e~ ReS™) (e MM Oy, e OW
IRN dx e—ReS(X) g=ilmS(x) /J‘RN dx e—ReS() <e—|ImS(x)> a~O(N)

rewt (: O(l))

In MC calculations, the above estimates are accompanied by statistical errors:

<O> e_O(N) iO(:I-/\/ Nconf) (N
e_O(N) i()(:I-/\/ Nconf)

neccesary sample size : N

ont - S@Mple size)

. >e°M  sign problem!
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S(x)=§

O(X) = x°

(X*) =

Nece

1Ny SOE7?) &

[Essence]

Example : Gaussian

ReS(x)zg(xz—l)

ImS(X) =—/X

p>1 withN =1
large S mimics large DOF

(x—i)2 =Re S(x) +i ImS(x) [

<e—i|m8(x) 2

(ﬂ—l _1) e A2

—B12

e
(B7=1)e* £/ YN oy )
e ”2+0(/N_ )

> o0(5)

conf ~v

>rewt _

<e—|ImS(x)>

rewt

numerically =

ssary sample size:

N

_ A2
e ReS(x) o e Pxc12

d

e—i Im S(x) o eiﬁx

|h‘.""7""-|--.-._|

In the limit f — o« (.'.1/,B<< 1/\/5),

0.1 0p 03

the integration becomes highly oscillatory

]
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Various approaches

Sign problem: a major obstacle for first-principles calculations in various fields
Examples: - finite-density QCD
- Quantum Monte Carlo of statistical systems
- real-time dynamics of quantum many-body systems

Various algorithms have been proposed:

. . [Parisi 1983, Klauder 1983] [Aarts et al. 2010, ... ]
Complex Langevm (CL) method [Nagata-Nishimura-Shimasaki 2016]
Lefschetz thimble method

(Komaba group)

- Original (LT) [witten 2010] [Cristoforetti et al. 2012, Fujii et al. 2013]
- Generalized thimble (GT) [Alexandru et al. 2015]
- Tempered Lefschetz thimble (TLT) [MF-Umeda 2017, Alexandru et al. 2017]

- Worldvolume HMC (WV-HMC) [MF-Matsumoto 2020]
Path/sign optimization [Mori-Kashiwa-Ohnishi 2017, Alexandru et al. 2018]

« Tensor network I[Levin-Nave 2007, Xie et al. 2014, Adachi et al. 2019, ...]
[Gu et al. 2010, Shimizu-Kuramashi 2014, Akiyama-Kadoh 2020]
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Various approaches

Sign problem: a major obstacle for first-principles calculations in various fields

Examples: - finite-density QCD
- Quantum Monte Carlo of statistical systems
- real-time dynamics of quantum many-body systems

Various algorithms have been proposed:
. . [Parisi 1983, Klauder 1983] [Aarts et al. 2010, ... ]
Complex Langevm (CL) method [Nagata-Nishimura-Shimasaki 2016]
+ Lefschetz thimble method
L. (Komaba group)
Original (LT) [witten 2010] [Cristoforetti et al. 2012, Fujii et al. 2013]
Generalized thimble (GT) [Alexandru et al. 2015]

Tempered Lefschetz thimble (TLT) [MF-Umeda 2017, Alexandr et al. 2017]
Worldvolume HMC (WV-HMC) [MF-Matsumoto 2020]
. Path/sign optimization [Mori-Kashiwa-Ohnishi 2017, Alexandru et al. 2018]

« Tensor network [Levin-Nave 2007, Xie et al. 2014, Adachi et al. 2019, ...]
[Gu et al. 2010, Shimizu-Kuramashi 2014, Akiyama-Kadoh 2020]

Today'’s talk:

- Basics of the TLT and WV-HMC methods
- Application to various lattice field theories [3/39]
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Introduction (done)

. Witten 2010, Cristoforetti et al. 2012,
Lefschetz thimble (LT) method [Ft:jii ot al. 201;]' e

/ Generalized thimble (GT) method [Alexandru et al. 2017]
Tempered Lefschetz thimble (TLT) method [MF-Umeda 2017

Worldvolume Hybrid Monte Carlo (WV-HMC) method

[MF-Matsumoto 2020]
Application to various models
5-1. Complex scalar at finite density [MF-Namekawa Lattice2024]
5-2. Chiral random matrix model [MF-Matsumoto 2020]

5-3. Hubbard model MF-Namekawa 2507.23748, 2508.02659, in prep]
5-4. Group manifolds [MF 2506.12002]

Summary and outlook



Plan

. [Witten 2010, Cristoforetti et al. 2012,
2. Lefschetz thimble (LT) method Ft:jii ot al. 201;]' e

/ Generalized thimble (GT) method [Alexandru et al. 2017]



Warm-up: Gaussian (revisited)

S(x):g(x—i)2 (8>1) i}/A z
O(X) = x° - >

/ [ aze @ o)

j dx e >® O(x)

(O = ~S(X) (000 = | dze™>®
_[ dxe change of path Y
0 2
[ dx e B2 42 | dxe X2 (x+iy?
— JOO NPT X—>Z=X+Ii B J‘OO dx e P12
o : Due to Cauchy's thm, oscillating factor
highly oscillatory (O = (O()),, disappears

: saddle pt (critical pt)

J : steepest descent (Lefschetz thimble)

ImS(z) : const (=0) on J (4/39]



Basic idea of the thimble method (1/2)

m Complexification of dyn variable: x=(x')eR" = z=(z' =x' +iy') eC"

assumption (satisfied for most cases) (S(x) :action, O(X) : observable)

e e3@O(z) : entire fcns over CN (can have zeros) \
iy 1 C" ={z}

Cauchy’s theorem /,}

- —-——

‘—
’f

Integrals do not change under continuous deformation
of integration surface : =, =R" — X (< C")
(boundary at | x|—> « kept fixed)

ou 1m0 a0
- j dx e S™) jdz g5
% >

severe sign problem |sign problem will be significantly reduced
if ImS(z) is almost constant on X

[5/39]



Basic idea of the thimble method (2/2)

N

Z (X

JC (anti-thimble)

&K (Lefschetz thimble)

ImS(z) constant

W Prescription for deformation

anti-holomorphic gradient flow

=0S(z,) with z,_, =X
Zt (deformed surface)

I < :Zo — ]RN
. . 2 [ReS(Zt)]. 20
S =05(z;)-2; =|0S(z;)| 20
[ (zt)] (z)- | (Zt)| = {[Ims(zt)]. =0

ReS(z;) : always increases except at crit pt £ (¢ : crit pt
ImS(z,) : always constant & 85(5)=0

Def | J (Lefschetz thimble) = union of flows out of crit pt{
ImS(z) : const over J (=ImS(¢))

If %4 12 5 7, then the oscillatory behavior of integral over Zt

must be reduced significantly by taking t to be sufficiently large
[6/39]



Ergodicity problem in thimble-based methods

relaxation of

, ) Sign problem resolved?
oscillatory integral

NO!

large flow time t
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Ergodicity problem in thimble-based methods

relaxation of

, ) Sign problem resolved?
oscillatory integral

NO!

large flow time t

Actually, there comes out another problem at large t : Ergodicity problem

E.g. e 50 — g AX2(y _jyr (81, ye,,)|finite-density QD : —
e S(A) _ g3 get D(A)

IYyA zeroofe”

o2 critpts: .

I ( -
/j/ \/ «2 thimbles : 7,
- - N

S
\ x 1 zero of e %W z, =i

| ‘ r\l
move of config I

zeroatz, =1 < ReS(z)=+w atz, =1
& [0 potential barrier on X; | < configs cannot move

[7/39]



Generalized thimble method

[Alexandru et al. 1512.08764]
Idea

Take a flow time t,
whichis {sufﬁaently large to mitigiate oscillatory behaviors

not too large so as to avoid ergodicity issues

iya zero of g5

/\\
|

0 I
However,

A closer investigation shows that the oscillatory behavior is reduced

only after the deformed surface reaches a zero of e73?)
[MF-Matsumoto-Umeda 2019]

solution :| Tempered Lefschetz thimble method
[MF-Umeda 2017] [8/39]
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Introduction

. [Witten 2010, Cristoforetti et al. 2012,
Lefschetz thimble (LT) method Ft:jii et al. 2013]

/ Generalized thimble (GT) method [Alexandru et al. 2017]
Tempered Lefschetz thimble (TLT) method [MF-Umeda 2017]
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5-1. Complex scalar at finite density [MF-Namekawa Lattice2024]
5-2. Chiral random matrix model [MF-Matsumoto 2020]
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5-5. Real-time dynamics [MF+, ongoing]

Summary and outlook



Tempered Lefschetz thimble method

[Fukuma-Umeda 1703.00861]
BTLT method

(1) Introducereplicasinbetween the initialinteg surface 2, = RN

and the target deformed surface X, as {Ztozo’ Tty Ty oo ZtAZT}

(2) Setup a Markov chain for the extended config space {(t,, x)}
(3) After thermalization, estimate observables using the subsample on X,

Sign and ergodicity problems are solved simultaneously !
[9/39]



Pros and cons of the original TLT method

B TLT method [MF-Umeda 2017]

IntroducereplicasinbetweenX; and Z; : {Ztozo’ T Zpys er Iy }

ly

|(CN — RZN
\A ZT

e

—_—

\zo _gN

Pros: solves the sign and ergodicity problems simultaneously
applicable to any systems once formulated by Pl with cont variables

Cons : large computational cost at large DOF

- need to calculate Jacobian E, (x) = 0z, (x) / ox o« O(N?®)
everytime we exchange configs between adjacent replicas

- necessary # of replicas «c O(N°™?) [10/39]
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4. Worldvolume Hybrid Monte Carlo (WV-HMC) method

[MF-Matsumoto 2020]



Worldvolume HMC (1/3)

[MF-Matsumoto 2012.08468]
m Worldvolume Hybrid Monte Carlo (WV-HMCQ)

HMC on a continuous union of deformed surfaces, R = U 24
ly

0<i<T
cN =R “worldvolume”

R : orbit of integration surface
inthe "target space" C" = R*"

orbit of particle — worldline

2T
orbit of string — worldsurface
orbit of surface — worldvolume

> X ( b )
4\ ‘ 4\ F\E _RN membrane
0=

Pros : solves the sign and ergodicity problems simultaneously
applicable to any systems once formulated by Pl with cont variables

@ major reduction of computational cost at large DOF

- No need to introduce replicas explicitly
- No need to calculate Jacobian E; (x) = 0z;(x) / 0x inMD process
- Autocorrelationis reduced due to the use of HMC (11/39]




Worldvolume HMC (2/3)

) [MF-Matsumoto 2012.08468]
B mechanism

jz dx e > O(x) _[2 dz, e O(z,) t-independent
(O(x)) =— =

j e I dz & t-independent
%, o)
T B B .
) jo dte W(t)J’zt dz; e s(zt)@(zt) (W (t) : arbitrary fcn)
T
[, dte™O dz e
0 Zt

) Lz dtdz, e Ve O(z,)

chosen s.t. the appearance prob
at different t are almost the same

< path integral over the worldvolume R

IcN
Statistical analysis method
for the WV-HMC is established in
é/ ZT [MF-Matsumoto-Namekawa 2107.06858]

_l’_

> X
4\ ‘ ’t\ \z - RN
0 [12/39]

_[ dtdz, e Wg=5(2)
o ataz e




Worldvolume HMC (3/3)
iy

. : F 3__., e — ,.__
Example: 1DO — l\\\\ N zero

H
o L
e 5 —g7°12(7 _j) {////J/f\(l\” A

7" ..
17/ "
i '
”f/f;/////;%/ § critical pts (saddle pts)

GT-HMC

Re(z) > X
[13/39]




Expected computational cost of WV-HMC

[MF-Matsumoto 2012.08468]
[MF-Matsumoto-Namekawa, Lattice2022]
[MF 2311.10663]

[MF-Namekawa, in preparation]

The whole problem comes down to integrating the flow egs:

z=(z")eC" (N <V : DOF) 7V
when 0;S(z) is known
(local field case)

1. Configuration flow 7 =6;S(z) = O(N)

2. Vector flow V; =0;0;S(z)v; = O(N) when 0;0;S(z) is sparse
(local field case) X

expected computational cost :

no fermion determinants : O(N)

fermion determinants: O(N*™)

[14/39]
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5. Application to various models

5-1. Complex scalar at finite density [MF-Namekawa Lattice2024]
5-2. Chiral random matrix model [MF-Matsumoto 2020]

5-3. Hubbard model MF-Namekawa 2507.23748, 2508.02659, in prep]
5-4. Group manifolds [MF 2506.12002]

5-5. Real-time dynamics [MF+, ongoing]



TLT/WV-HMC have been successfully applied to ...

— (0+1)-dim massive Thirring model [MF-Umeda 1703.00861] (TLT)

— 2dim Hubbard model [MF-Matsumoto-Umeda 1906.04243, 1912.13303]

[MF-Namekawa, 2507.23748, 2508.02659] (TLT)
(WV-HMC)

— chiral random matrix model (a toy model of finite-density QCD)
[MF-Matsumoto 2012.08468] (WV-HMC(Q)

— anti-ferro Ising on triangular lattice [MF-Matsumoto 2020, JPS meeting]
(WV-HMCQ)

— complex scalar field at finite density [MF-Namekawa 2024, in prep]
(WV-HMOQ)

— group manifolds [MF 2506.12002]
(WV-HMC)

So far always successful for any models when applied,

though the system sizes are not yet very large (DOF N <10%) (15/39]
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5. Application to various models

5-1. Complex scalar at finite density [MF-Namekawa Lattice2024]



Finite-density complex scalar (1/3)

i[;f(x) +1in(x)] : d-dim complex scalar field

(D(X) - \/E

Continuum action

(X, : Euclidean time)
S(p) = [d°X[8,0'0,0+M*p'p+ A(e"p) + (" Oop— 050" p) |
= [d*X[(8,9" + 16, 0" )8, — 15, up) + M* |9 +2| 0"

Lattice action [Aarts 0810.2089]

d-1
S(p) = Z{(Zd +m*) @, [ +A 1o, ' =D (" glo,., + “5“’%(0:%)}
n v=0

Introducing (&,,n,) with o =— (& +in,), we have

-
8(5’77) = Z (5 77[‘]) + (5 + nn) o Z (§n+|§ + 77n+|77n)

! __COSh :u (§n+O§n + 77n+077n) - I Slnh /u (é:n+077n o 77n+0§n)

2d+m

We complexify (£,7) e R? to (z,w) e C* with the flow equation

2 =[6S(z,w) /62, ], W, =[6S(z,w)/ow ] [V lattice volume
= N =2V

[16/39]



Finite-density complex scalar (2/3)

[MF-Namekawa Lattice2024]

B Computational cost scaling for d=4 (GT-HMC)

10° ¢

Etime(RATTLE)[s]

10"

103 o

10° o

scaling: O(N) =0(V) (as expected)

NB: The scaling will become O(V*%)

if we reduce the MD stepsize as As ocV /4

to keep the same amount of acceptance for increasing volume

| 4
Complex ¢
'm=0.1, A=1.0, u=0.9, T=0.01
96*
Fugaku(Nnode=256) =
S 83x10°N—]
0 10 10" N (N=2V) 10° 10'°

[17/39]



Finite-density complex scalar (3/3)

[MF-Namekawa Lattice2024]

B Comparison with TRG and CL  [TRG (4D): Akiyama et al. 2005.04645 (Dcut=45)]

(n)

NB: CL works without suffering from wrong convergence problem

0.5

04

0.3

0.2 |

0.1

0.0

-0.1

(satisfies a reliability condition)

4D

WV-HMC, Ax4x4x4 [Nconf:-‘lDGO) —e—
WV-HMC, 6x6x6x6 (Nconf=400)
WW-HMC, 8x8x8x8 (Nconf=100) +—e—

CL, 4x4x4x4 (Nconf=10000) - - - -
CL, 6x6x6x6 (Nconf=10000)
CL, 8x8x8x8 (Nconf=10000) - - - -
TRG [Akiyama et al.(2020)], 4x4x4x4
TRG [Akiyama et al.(2020)], 8x8x8x8
TRG [Akiyama et al.(2020)], 1024* ——

Complex ¢4
m=0.1, A=1.0

0.0

) ) )
0.2 0.4 0.6 0.8

U
Silver Blaze

WV-HMC = CL

1.0

(0]

4D

0.40 - : _
WV-HMC, 4x4x4x4 (Nconf=1000) +—e—i
WV-HMC, 6x6x6x6 (Nconf=400)
WV-HMC, 8x8x8x8 (Nconf=100) r—e—i
0.35 CL, dxdxdxd (Nconf=10000) - - - -
CL, 6x6x6x6 (Nconf=10000)
CL, 8x8x8x8 (Nconf=10000) - - - -
0.30 TRG[Akiyama et al.(2020)], 4x4x4x4
’ TRG[Akiyama et al.(2020)], 8x8x8x8
| TRG[Akiyama et al.(2020)], 1024*
0.25 4
0.20
m=0.1, A=1.0
0.15 | R
L I e T
'\'/'
0.10 ' ' '
0.0 0.2 0.4 0.6 0.8 1.0

WV-HMC = CL
[18/39]
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5. Application to various models

5-2. Chiral random matrix model [MF-Matsumoto 2020]



Chiral random matrix model (1/2)

.. ) MF-Matsumoto 2012.08468
W finite density QCD [ !

0 o
=tre_'B(H_”N) ({)/#,}/V}=25W, 7/ﬂ:}/;:£ T O#J]

O
. (W2g)[tr P+ ([ (7uDy+m)y +uy Ty]
:'[[dAﬂ][dt//dr,y]e Jr i+ J7 (7D

B N L RN
s o-z(éﬂ+Aﬂ)+y m

ZQCD

toy model

B chiral random matrix model [Stephanov 1996, Halasz et al. 1998]

B —ntrwiw m IW + ) (quantum field replaced by
Z steph —IdZW € det(iwf ey m j (a matrix incl spacetime DOF
(T=0,N, =1)

W = (W;) = (Xj; +1Y;) i nxn complex matrix
(DOF : N=2n* < 4L*(N?-1))

M role of an important benchmark model

- well approximates the qualitative behavior of QCD atlarge n

- complex Langevin suffers from wrong convergence [Bloch et al. 2018]
[19/39]



Chiral random matrix model (2/2)

o [MF-Matsumoto 2012.08468]
matrix size : n=10 (DOF : N =200)

sample size
1 2 reweighting : 10k
. — o\ complex Langevin :10k
chiral condensate (yyw)=——InZ._, [m=0.004, T =0 ,
- T 2n am o %tep [ ] WV-HMC : 4k-17k
0.06 ¢ ] 0.06;—' ' ' ' '
0.05; X reweighting ’ 0.05;— WV-HMC
—_6’64_ — exact ] ——9—94’— X complex Langevin -
5 : WV-HMC - ]
g 0.03 F g 0.03 £ exact
= 0.02} reweighting S b =
0'01;(S|gn problem 001t x )
0.00¢ 0.00f X ook g gy
; F complex Langevin
-ootp o o b1 -001fwrong convergenge) 3
0.2 0.4 0.6 0.8 1.0 02 0.4 0.6 0.8 1.0
J7i

_ 1 0 g
baryon # density <WTV/> =——InZ,
- 2nop

5ol 2 WV-HMC
X reweighting X X 20_ WV-HMC
1.5 * exact f X complex Langevin
~ L . . ] ~ 1-5_' — exact X x
= 1ol reweighting (% ] >0 o X .
2 7l (sign problem) * : 2 10} complex Langevin
[ ] i " (wrong convergence)
0.5F ] [ X
i 1 0.5F x ]
L J 3 X
i ] x %
-~ 0.0f ] 0.0F
0.2 0.4 0.6 0.8 1.0 02 04 06 08 10

) ’ [20/39]
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5. Application to various models

5-3. Hubbard model MF-Namekawa 2507.23748, 2508.02659, in prep]



Hubbard model

m Hubbard model toy model of electrons in a solid [Hubbard 1963]

T
X,0!

e C ., C,, :Creation/annihilation operators (site X, spin o-(:T,i))

e Hamiltonian
;
H=-x Z ZCX,GC)’,U +U an,Tnx,i _'UZ(nx,T T nx,i)
<X1Y> o X X
_ At
nx,a = Cx C

,O X, 0

-

x(>0) : hopping parameter

U (> 0) : strength of on-site repulsive potential
|1 - chemical potential

e particle-hole transformation :
a, =c,, b =(-1)"c,

Ho kY (alay+blby)+uz Z(nj—nf)z—ﬁzx‘,(nf—nf) (ﬂfﬂ—%j

<X!y> X

e half filling :

i=0 < Ni2<nj—n§>:o & Niz<nX,T+nX,¢>:1

s X

[21/39]



Quantum Monte Carlo computations

[MF-Namekawa 2507.23748, 2508.02659]
o discretize the imaginary time direction : f = Nie

Trotter decomposition + bosonization (HS transformation)

e [trick] introduce a nonphysical redundant parameter « : [Beyl et al. 2018]
(nf - ni’)2 = a(n; - ni’)2 ~(l-a) (n} +n —1)2 +1-a (NB: (n,)*=n,)

e choice of a:

{

HS field A

HS field B

Nt
Z=tr(e™)" =tr] Je™"
(=1

-> (U/2)(AZ+Bf)
- [dAdB e *

det D, (A, B) det D, (A, B)

. d
(Da/b‘//)x _ ei(€ﬂ+ICo)Ax+Cle—012l//X —y, + GKZ(%H n Wx_i)

i=1

X = (£,X) (Ezl,...,Nt), C,=vaeU, c =.(1-a)eU

phase = sign(£1)
a =0(c, =0) :sign problem A, ergodicity problem x

a =1 (c,=0) : sign problem x, ergodicity problem O

Jzeros of detD,, (A B) on R"

optimal «

[22/39]



Tuning of a

[MF-Namekawa 2507.23748, 2508.02659]
2.0 \
0=5x1072
15 | 2D HUbbard CL=1X10-3 ]
a=1x10"° ——
GT-HMC(t=10""%): k=1, U=8, L xL =6x6, f=6.4, [i=2.0
1.0 MOT -
2 0.5
=
& 00 Fr -t A e i T 2
05 |
-1.0
15 | | | |
0 20 40 traj 60 80 100
[2507.23748] «a =1.0x10" with T, =1.0x10™"
[2508.02659]

a =5.0x107° with T, =4.0x10°°

worldvolume: very thin layer (confs can be trapped at corners)

ergodicity enhancement via embedding GT-HMC (&)
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How to deal with detD in WV-HMC

[MF-Namekawa 2507.23748, 2508.02659, in prep]

_ [MF-Namekawa Lattice2024]
[X:(Xi) - {A—(M}J
B=(B,)

_'dx e *™ (S(x) = S,(x) —logdet D(x))

Z = [ dxdidye S ®-7P0y
= .dX e_SO(X) det D(X)

method 1: treat x as the only dyn variable,
compute D*(x) with direct solvers
[MF-Namekawa 2507.23748, 2508.02659]

main part 2=05(2) (z" = 8iS(z))
= integration of flow eqgs :

V=0°S(2)Vv (v‘ =0,0,S(2)V’

h 65=05, — trD*o.D
WEE 160,58 =00,8,~trD"3,0,D +trD3,DD4,D

sparse direct method  direct method

comput cost: O(N?)

method 2 : use of real pseudofermions [MF-Namekawa, in prep]

comput cost : O(N?) [O(N*)?] [24/39]



Real pseudofermion

[MF-Namekawa Lattice2024]
Z = I dxdyzdye 7Py - Idx e ™ det D(X) [MF-Namekawa, in prep]

@ | M (x) =D(x) D" (x) | (complex symmetric matrix)

¢ 1) A>0 " B _
@ If |35 Re[det*2(L+iAB)|>0 orM==A+IB,

_ can be realilzed by tuning
then det D(x) can be rewritten to the form the redundant parameter «

det D(x) = (detM (x))"* = [dgpe ¥/2#"M 009

(¢ : real pseudofermion ("Majorana" pseudofermion) )

3 path integral representation with dyn variable (x,) :

Z — Idxd¢e_80 (X)_(1/2)¢TM_1(X)§D — J.dxdgp e_S(X:(p)
Monte Carlo

with S(X,@) = S,(X) + %ng M _l(X)go

@ compute M *(z2) ¢ with iterative solvers comput cost : O(N?) [O(N*)?] [25/39]



Computational cost scaling
[MF-Namekawa Lattice2024]

elapsed time for 1 MD trajectory with a single core | (flow time : fixed)

107 S —
‘» [ 0f 2D Hubbara (1) direct solvers oc N°
o0 | U=8, B=6.4, i=2, 0:=5x107 ;
9 | 1 (2) iterative solvers
A 107} 1 w/ real pseudofermions
w | | oc N?
= 10t 20x12x12 .
> | 20x10x10
C 10°} ‘ 20x8x8
8 | 20x6x6
= 10° | :
el 50xAxA CG:2310°N° — |

N T Direct: 2.0 10° N° —— ||
10402 10° 10%
N; x Lg x Lg
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NA3 algorithm: observables (2D : 6x6, near T=0)

[MF-Namekawa 2507.23748, 2508.02659]

30 [ [ [ [ [ [ [ [
2D Hubbard (20x6xe)
25 k=1, U=8, f=6.4, L xL,=6x6 i
D0 [ S T A s
A~ X
< Lot
1.5 F % s ¥ _
10F ® =+ % ol .
¥ WV-HMC(e=0.32) ——
- ALF(e=0.01,Nconf=15000) +—+—
sign problem K

- ALF (well established MC code in cond - mat) [Assaad et al.]

- For such parameters where ALF does not work,

WV -HMC does work with small statistical errors
[27/39]



NA3 algorithm: observables (2D : 6x6, near T=0)

[MF-Namekawa 2507.23748, 2508.02659]

10.0 | | | | | | | |
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sign problem L

- ALF (well established MC code in cond - mat) [Assaad et al.]

- For such parameters where ALF does not work,

WV -HMC does work with small statistical errors
[28/39]



NA3 algorithm: observables (2D : 6x6, near T=0)

[MF-Namekawa 2507.23748, 2508.02659]

10.0 | | | | | | | |
.| 2D Hubbard 20xex6) ..
k=1, U=8, $=6.4, L.xL .=6x6 %
6.0 | . |
PRI - s * >+:‘inite e effect (large) -
) %
N~

0.0 [ -

2.0 | %%;[ % % = ]

Lol flnlte e effect (small) WV-HMC (e=0.32) —— |-
ALF(£=0.01,Nconf=15000) -+ -
0, 1 2 3 4 5 6 7 8 9 10

sign problem L

- ALF (well established MC code in cond - mat) [Assaad et al.]

- For such parameters where ALF does not work,

WV -HMC does work with small statistical errors
[28/39]



e

NA3 algorithm: observables (2D : 6x6, near T=0)

[MF-Namekawa 2507.23748, 2508.02659, in prep]

100 [ [ [ [ [ [ [ [ [
.| 2D Hubbard  oxex6) . .
k=1, U=8, B=6.4, L XL .=6x6 .
7.0 T T T T -
o
2D Hubbard <N
65 1. UnB, Beb., L 646, i<6.0 WV finite e effect (large) _
5.5 | 1 I*
T % S 7]
;. i l ALF
SO WV-HMC(e=0.32) —— |_
.5 wv-Hume —— || €=0.01,Nconf=15000) ——+—
Fit w/ £€=0.04-0.13: 5.05(10)+6.9(1.3) £ - ' ' ' '
ALF —— | © 7 8 9 10

- ALF (well established MC code in cond - mat) [Assaad et al.]

- For such parameters where ALF does not work,
WV -HMC does work with small statistical errors
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NA3 algorithm: observables (2D : 6x6 near T=0)

59 in prep]

10.0 2D Hubbard

2D Hub 1 k=1, U=8, B=6.4, L xL=6x8, [i=2.0 |
8.0 |- - **

k=1, U=8, =6. *

o @ O S-S L3 . SO TWV ..... ]
J_ I L I
/\4.0 — - 20} ! —
320 ] ol ALF | | WV-HMC +—x— || |
' Fit w/ £2=0.07-0.13: -0.45(78)+1.1(8.0) €2
9% ALF
OO L -Héa* ------- # f{% ------ ) _6.?0,05 0.00 0.05 82 0.10 0.15 0,200 i —]
finite e effect (small
20 | > ( ) WV-HMC(e=0.32) —— |-
ALF(e=0.01,Nconf=15000)
4.0 | | | | |
0 1 2 3 4 5 6 7 8 9

sign problem L

- ALF (well established MC code in cond - mat) [Assaad et al.]

- For such parameters where ALF does not work,
WV -HMC does work with small statistical errors

10
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NA3 algorithm: observables (2D : 8x8, near T=0)

[MF-Namekawa 2507.23748, 2508.02659]

3.0

0 1 2 3 4

2D Hubbard
- k=1, U=8, p=6.4, L xL.=8x8

(20x8x8)

WV-HMC(e=0.32) —+—
ALF(e=0.01,Nconf=12000)

5 6 7 8 9
sign problem ¥

- ALF (well established MC code in cond - mat) [Assaad et al.]

- For such parameters where ALF does not work,
WV -HMC does work with small statistical errors

10
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NA3 algorithm: observables (2D : 8x8, near T=0)

100 | | | | I | | I | | | | | | | | | |

.| 2D Hubbard  (20x8x8) ..

k=1, U=8, f=6.4, L xL.=8%8 :

6.0 |- . .
34.0 - ] :3 .
~20 T % : * ]

g
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[MF-Namekawa 2507.23748, 2508.02659]

0 05 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 10
sign problem SF

- ALF (well established MC code in cond - mat) [Assaad et al.]

- For such parameters where ALF does not work,

WV -HMC does work with small statistical errors
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1.
2.

Introduction

. [Witten 2010, Cristoforetti et al. 2012,
Lefschetz thimble (LT) method Ft:jii ot al. 2013]'

/ Generalized thimble (GT) method [Alexandru et al 2017]
Tempered Lefschetz thimble (TLT) method [MF-Umeda 2017]

Worldvolume Hybrid Monte Carlo (WV-HMC) method
[MF-Matsumoto 2020]

Application to various models

5-1. Complex scalar at finite density [MF-Namekawa Lattice2024]
5-2. Chiral random matrix model [MF-Matsumoto 2020]

5-3. Hubbard model [MF-Namekawa 2507.23748, 2508.02659, in prep]
>~/ Group manifolds [MF 2506.12002]

5-5. Real-time dynamics [MF+, ongoing]

Summary and outlook



Cauchy’s theorem for group manifolds (1/2)

_ [MF 2506.12002]
G : compact goup (N =dimG : #DOF)

We want to evaluate the following path integral:

’ J’G (dU,) e 0W,) | (U, eG : dynamical variable
(0) = j@ (dU,) e SO S(U,) € C : complex action

ﬂeG . Lie alg of G with basis T,(a=1,...,N) \

(TaT =-T and trT.T, = —5ab)

g, =dU,U;" =T, &% : Maurer-Cartan 1-form - G
LJO é%)

bi-invariant metric : ds® =tr@, 0, = (62)?

g, : vielbein

\ Haar measure : (dU,)=6; A---A 6}’ /
[33/39]




Cauchy’s theorem for group manifolds (2/2)

I MF 2506.12002
G® : complexification of G [ ]

LieG=®RT, = (LieG)" =®CT,
Gt ={e’e”...e*|Z,Z',...., 2" € (LieG)" }

Cauchy's them for G*

The integral of a holomorphic function on a real N-dim submanifold * in G*

|.@u), fU)

does not change under continuous deformations of X

————————————————————
- -
- -\

Here, forU,U+dUecx ) Xommmmmmmmmem ey Ici@
6, =dUU™" =T, 67 =T,(E;6) (ab=1...,N)
(dU), =0, A+ A O = (dU,) ( ) 3 =2

“»_kwuoéwmowo_gmuxe“mow)
o fL@uye® | ), e

[34/39]



Path integral over the worldvolume
[MF 2506.12002]

J, @), e o)
Jy, (@), e
j dte™® jzt (du), e o)
[dte™® jzt (du), eV
[ 1dul, e’ FU)oW)
[ 1dU e’ F)

(O) =

V(U)=ReSU)+W (t(U))
F(U) _ dt (dU )zt e_i ImS(U) _ a_l det E e—i ImS(U) (hczi(gj:t) | du |R///
| dU |R \/; '

[
>

t

U/ldu |, =y @u,)

(base area)
. . (ds? =Retr6] 6, =7,,056,)
constrained molecular dynamics (RATTLE) on R
can be introduced in a similar way to the flat case
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one-site : SU(2) with a purely imag coupling

[MF 2506.12002]
G =SU(2)

S(U) = Be(U) E—gtr(u +u—1) (BeiR)

analytic result: (&) =—1,(8)/1,(B)

numerical result (WV-HMCQ):

Re<es Im<e> -
'l 'l '] 'l 'l pll
1.0 1.5 2.0 2.5
0.08 ¥
-0.2}F
0.06
0.04 -0.4rf
0.02
-0.6}
L . . - ~ i
1.0 1.5 2.0 2.5 A
-0.02 -0.8}
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one-site : SU(3) with a purely imag coupling

[MF 2506.12002]
G =SU(3)

S(U) = Be(U) E—gtr(u +u—1) (BeiR)

analytic result:  Z(8) =Y det| .., (8/3)]

ge”Z

(&) =—%Inzw)

numerical result (WV-HMOQ):

Re<e> Im<e>

o - - - = i

0.05 1.0 1.5 2.0 2.5

-0.02
0.04 .
-0.04
0-03 ‘.‘ﬂ" _0-06
0.02 P ~0.08
001 T ~0.10
-------- , : _ L i 012
1.0 1.5 2.0 25" 414
~0.01
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one-site : U(2) with a topological term

[MF, Lattice2024]
G=U(2) (NB:U(2)=SU(@2)xU(L)/Z, #SU(2)xU (1))

S(U)=pelU)-16qU)
s—ﬁtr(u +U—1)—itr(u —U‘l)
A

Ar
(,B,QE]R)

result (WV-HMC):  [B=05, 8=nz(n=1...,5)]

Im)ﬁq>

0.15
0.10

0.05

g@/ﬂ
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Introduction

. [Witten 2010, Cristoforetti et al. 2012,
Lefschetz thimble (LT) method Ft:jii ot al. 2013]'

/ Generalized thimble (GT) method [Alexandru et al 2017]
Tempered Lefschetz thimble (TLT) method [MF-Umeda 2017]

Worldvolume Hybrid Monte Carlo (WV-HMC) method
[MF-Matsumoto 2020]

Application to various models

5-1. Complex scalar at finite density [MF-Namekawa Lattice2024]
5-2. Chiral random matrix model [MF-Matsumoto 2020]

5-3. Hubbard model [MF-Namekawa 2507.23748, 2508.02659, in prep]
5-4. Group manifolds [MF 2506.12002]

5-5. Real-time dynamics [MF+, ongoing]

Summary and outlook



Summary and outlook

B Summary : WV-HMC algorithm has been applied to various cases successfully

- exact reversibility
- exact volume preservation H' = H + O(As®)
- approximate energy conservation to O(As?) at one MD step

® Outlook
¥ Roadmap to finite-density QCD with WV-HMC :
local fields
(e.g. complex scalars) 5 pure YM ———
(e.g. w/ finite 0)

group manifolds =~ —— fini i

: i —> finite-density QCD
(e.g. one-site model) [MF. MF+, ongoing] (w/ or w/o Q)y <
[MF, MF+, ongoing]

fermions
(e.g. Thirring, Stephanov, Hubbard)

V¥ Developing the algorithm itself (MF, ongoing]
- incorporation of machine learning technique

- incorporation of other algorithm(s)

(e.g.) path optimization and/or tensor RG (non-MC) «¢f) TRG for 2D YM:
[MF-Kadoh-Matsumoto 2107.14149, ...]

V¥ Important in the near future : MC for real-time dyn of quant many-body systems
[MF+, ongoing]

first-principles calculations of nonequilibrium processes
(such as the early universe, heavy-ion collision experiments, new devices, ...) [39/39]



Thank you.
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