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highly oscillatory

In MC calculations, the above estimates are accompanied by statistical errors:
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( )1 / 1 /In the limit  ,
the integration becomes highly oscillatory

β β β→∞ ∴ 



Various approaches
Sign problem: a major obstacle for first-principles calculations in various fields
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[Witten 2010] [Cristoforetti et al. 2012, Fujii et al. 2013]

[Alexandru et al. 2015]

[MF-Umeda 2017, Alexandru et al. 2017]

[MF-Matsumoto 2020]

[Levin-Nave 2007, Xie et al. 2014, Adachi et al. 2019, ...]
[Gu et al. 2010, Shimizu-Kuramashi 2014, Akiyama-Kadoh 2020]

Various algorithms have been proposed:
   ・ Complex Langevin (CL) method
   ・ Lefschetz thimble method

-  Original (LT)
- Generalized thimble (GT)
- Tempered Lefschetz thimble (TLT)
- Worldvolume HMC (WV-HMC)

   ・ Path/sign optimization
   ・ Tensor network

Examples: - finite-density QCD
- Quantum Monte Carlo of statistical systems

                 - real-time dynamics of quantum many-body systems

[Parisi 1983, Klauder 1983] [Aarts et al. 2010, … ]
[Nagata-Nishimura-Shimasaki 2016]

(Komaba group)

[Mori-Kashiwa-Ohnishi 2017, Alexandru et al. 2018]
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Warm-up: Gaussian (revisited)
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Basic idea of the thimble method (1/2)

Cauchy’s theorem
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Basic idea of the thimble method (2/2)
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■Prescription for deformation
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Ergodicity problem in thimble-based methods
tlarge flow time relaxation of

oscillatory integral
Sign problem resolved?

NO!
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Ergodicity problem in thimble-based methods

Actually, there comes out another problem at large t : Ergodicity problem

tlarge flow time relaxation of
oscillatory integral

Sign problem resolved?
NO!
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Generalized thimble method

solution：
[MF-Umeda 2017]

Tempered Lefschetz thimble method
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[Alexandru et al. 1512.08764]

,

 

Take a flow time  
sufficiently large to mitigiate oscillatory behaviorswhich is not too large so as to avoid ergodicity issues

t

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A closer investigation shows that the oscillatory behavior is reduced
only after the deformed surface reaches a zero of S ze−

[MF-Matsumoto-Umeda 2019]
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Tempered Lefschetz thimble method
[Fukuma-Umeda 1703.00861]

( )Re S z = +∞

■TLT method
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Pros and cons of the original TLT method
■TLT method

Cons : large computational cost at large DOF
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[MF-Umeda 2017]
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Worldvolume HMC (1/3)
■Worldvolume Hybrid Monte Carlo (WV-HMC)

0
HMC on a continuous union of deformed surfaces, 
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Worldvolume HMC (2/3)
■mechanism
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Statistical analysis method
for the WV-HMC is established in
[MF-Matsumoto-Namekawa  2107.06858]
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Worldvolume HMC (3/3)
■Example: 1DOF

[13/39]

2) 2( / ( )zS ze e z i− −= −

GT-HMC

zero

x

WV-HMC

x

iy

iy

critical pts (saddle pts)

0.8T =

x

iy



Expected computational cost of WV-HMC
[MF-Matsumoto 2012.08468]
[MF-Matsumoto-Namekawa, Lattice2022]
[MF 2311.10663]
[MF-Namekawa, in preparation]

[14/39]

The whole problem comes down to integrating the flow eqs:

1. Configuration flow

( ) Niz z= ∈ (  : DOF)VN ∝

( )i iz S z∂= ( )O N⇒

2. Vector flow ( )i i j jS z∂ ∂=v v ( )O N⇒ ( )
 

w
l

hen  is sparse
  ( ocal field case)

i jS z 
 

∂



∂

x

z

u

v


flow

2 3( )
( ) no fermion determinants : 

 fermion determinants :    O N
O N

−∃

expected computational cost :

( )
(

w
o

hen  is known
   l cal field case)

iS z∂ 
  
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TLT/WV-HMC have been successfully applied to ...
ー (0+1)-dim massive Thirring model

ー 2dim Hubbard model

ー chiral random matrix model (a toy model of finite-density QCD)

ー anti-ferro Ising on triangular lattice

[MF-Umeda 1703.00861]

[MF-Matsumoto-Umeda 1906.04243, 1912.13303]

[MF-Matsumoto 2020, JPS meeting]

[MF-Matsumoto 2012.08468]

410
 ,
 though the system sizes are not yet very large (DOF ) 
So far always successful for any models when applied

N 

ー complex scalar field at finite density [MF-Namekawa 2024, in prep]

(TLT)

(WV-HMC)

(WV-HMC)

(WV-HMC)

(TLT)

[15/39]

[MF-Namekawa, 2507.23748, 2508.02659]
(WV-HMC)

ー group manifolds [MF 2506.12002]
(WV-HMC)
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Finite-density complex scalar (1/3)

Continuum action

([1( ) ( ) )]
2

 : -dim complex scalar fieldx x i x dϕ ξ η= +

2 2
0 0

2 2 4
,0 ,0

) ( ) ( )

( )( ) | | |

(

|

d

d

S d x m

d x m

ν ν

ν ν ν ν

ϕ ϕ ϕ ϕ ϕ λ ϕ ϕ µ ϕ ϕ ϕ ϕ

ϕ µδ ϕ ϕ µδ ϕ ϕ λ ϕ

∗ ∗ ∗ ∗ ∗

∗ ∗

 = ∂ ∂ + + ∂ − ∂ 

 ∂ ∂ + 

+

+ − +

∫
∫

Lattice action
,0 ,02 2 4

1

0
( (2 ) | ||) | ( )n n n n n n

n

d
S d m e eν νµ δ µ δ

ν ν
ν

ϕ ϕ λ ϕ ϕ ϕ ϕ ϕ−∗ ∗
+ +

−

=

 
+ + − + 

 
= ∑ ∑

1( , ) ( ),
2

 with  we haveIntroducing  n n n n niξ η ϕ ξ η= +

2
2 2 2 2 2

0 0 0 0

1

1
( ) ( )

, ) 2 4
cosh ( ) sin

2 ( )

h )
(

(

n n n n n i n n i n

n
n

n n n n n n n

d

i

d m
S

i

λξ η ξ η ξ ξ η η
ξ η

µ ξ ξ η η µ ξ η η ξ

+ +

+ + + +

−

=

 +
+ − + 

 
 −

+

+ − 

+
=

−

∑∑

2 2

[
( , ) (

(,
, )

( , ) / ] , ) / ][
We complexify  to  with the flow equation
     

V V

n n n n

z w
z S z w z w S z w w

ξ η
∗ ∗

∈ ∈

∂ ∂ ∂= = ∂

 



0(  : Euclidean time)x

2
:  lattice volumeV

N V
 
 ⇒ = 

[Aarts 0810.2089]

[16/39]



Finite-density complex scalar (2/3)

( ) ( )scaling: (as expected)O N O V=

1.25

1/4

( )NB:  The scaling will become 

   
       if we reduce the MD stepsize as 

to keep the e    same amount of acceptanc  for increasing volume 

O V

s V −

 
 

∆ ∝ 
  
 

■Computational cost scaling for d=4
[MF-Namekawa Lattice2024]

( )2N V=

[17/39]

(GT-HMC)



Finite-density complex scalar (3/3)

■Comparison with TRG and CL

Silver Blaze

saturate for TRG

4D 4D

[TRG (4D): Akiyama et al. 2005.04645 (Dcut=45)]

[18/39]

NB: CL works without suffering from wrong convergence problem
(satisfies a reliability condition)

WV-HMC = CL WV-HMC = CL

[MF-Namekawa Lattice2024]
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Chiral random matrix model (1/2)
■finite density QCD

[MF-Matsumoto 2012.08468]

2

2

2 †

2

( )

†

(1/2 )

(1/2 )

[ ( ) ]
[ ][ ]

( )
[ ]

( )

QCD
tr

tr

tr

Det

H N

g

g

F

F

D m
Z

dA d e

dA e

e

d
m A

A m

µ

µ µ µ
µ

µ µ µ

µµ

µν

µν

β µ

ψ γ ψ µψ ψ
ψ ψ

σ µ

σ µ

+

− −

+ +

∂ + 
  ∂

=

=

=
++ 

+∫

∫∫∫
∫

†
†

0
{ , } 2 ,

0
µ

µ ν µν µ µ
µ

σ
γ γ δ γ γ

σ

  
= = =      

■chiral random matrix model [Stephanov 1996, Halasz et al. 1998]

2 †
†Steph

tr detWWn iW
Z

m
e

m
W

W
d

i
µ

µ
−  

 +

+
=


∫

( ) ( ) :  complex matrixiij ij jW nX iYW n×= = +

 
 
 
quantum field replaced by
a matrix incl spacetime DOF

( )2 4 22 1)(  4 cLN n N⇔= −DOF : 

- complex Langevin suffers from wrong convergence [Bloch et al. 2018]

■role of an important benchmark model
- well approximates the qualitative behavior of QCD at large n

toy model

)( 10, fT N= =

[19/39]



Chiral random matrix model (2/2)

chiral condensate

baryon # density

10 200 (DOF )n N= =matrix siz ：e : 
1
2 StephlnZ

n m
ψψ ∂
〈 〉 ≡

∂

† 1
2 StephlnZ

n
ψ ψ

µ
∂

〈 〉 ≡
∂

[ ]0.004 0, m T= =

[MF-Matsumoto 2012.08468]

reweighting

reweighting

complex Langevin

complex Langevin

WV-HMC

WV-HMC

[20/39]

(sign problem)

(sign problem)

(wrong convergence)

(wrong convergence)

sample size
reweighting : 10k
complex Langevin :10k
WV-HMC : 4k-17k

WV-HMC

WV-HMC
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Hubbard model
[Hubbard 1963]■Hubbard model toy model of electrons in a solid

( )†
, ,, , ( , )  : creation/annihilation operators n site  spi  c cσ σ σ• =↑ ↓x x x

↑

↓↑

↓

↑
( )
( )

†
, ,,

0
0

 : hopping parameter
 : strength of on-site repulsive potential

 : chemical potential

n c c

U

σ σ σ

κ

µ

 ≡
 >


>


x x x

( )†
, , , , , ,

,
       c c nUH n nnσ σ

σ
κ µ↑ ↓ ↑ ↓
〈 〉

+= − − +

•

∑∑ ∑ ∑
x

x y x x x x
xx y

Hamiltonian

( ) : # of sitesd
s sLN =

↓

↑ ↑

†
, ,( 1),

particle-hole transformation : 
            ba c c↑ ↓

•
≡ ≡ − x

x xx x

( ) ( ) ( )2† †

, 2
a ba bH n n

Ua a b b n nκ µ
〈 〉

= − + − −+ −∑ ∑ ∑ x xx y x y x x
x xx y



[21/39]

2
Uµ µ ≡ − 

 


, ,

1 10 0 1

half filling : 

            ba

s s

n n n n
N N

µ ↑ ↓= ⇔ 〈 〉 = ⇔ 〈

•

− + 〉 =∑ ∑x x x x
x x





Quantum Monte Carlo computations

( ) ( )2
0 1 1

2 2

/ 0
1

1

( )

(1/ )2) (
det ( , ) d

(

et ( ,

)

)

tr tr

   

t
t

x x

x
x

x

NH

a
d

a b x x x i x ix
i

b

c

N

c Bi A c

H

A B

Z

e

e

dAdB D A B D A B

D e

e

µψ ψ ψ κ ψ ψ

−

− + −
=

+

=

−

−

± +

− +

= =

=

= − + +

∑

∑
∫

∏




 

 

( ) 10( , ,, ) 1, , (1 )tx UcN cUα α= … = = −= x   

1

0

:
0 ( 0)
1 ( 0)

 : sign problem ,  ergodicity 
o

ch
problem

 :

oice of 
× i o     s gn pr blem ×,  ergodicity  pr blem  c

c

α
α
α
= =

 = =

•

〇
△

optimal α

/ )de ,t (zeros of  on N
a b A BD∃ 

[MF-Namekawa 2507.23748, 2508.02659]
discretize the imaginary time direction : tNβ• = 

Trotter decomposition + bosonization (HS transformation)

( ) ( ) ( )2 2 2

:

)(1 1 1

  introduce a nonphysical redundant parameter 
      a abab bn n n n n n

α

α α α

•

− = − − − + − + −x x x x x x

【trick】

( )2)NB :  (n n=x x

HS field A HS field B

[Beyl et al. 2018]

[22/39]

( 1)phase sign⇒ ±



Tuning of α

[23/39]

[MF-Namekawa 2507.23748, 2508.02659]

3 3
15.0 10 4.0 10 with Tα − −= × = ×

worldvolume: very thin layer (confs can be trapped at corners)

ergodicity enhancement via embedding GT-HMC (以毒制毒)

[2507.23748] 2 1
11.0 10 1.0 10 with Tα − −= × = ×

[2508.02659]



How to deal with detD in WV-HMC
0

0

( ) ( )

( )

( )

det ( )

S x D

x

S

x

x

S

Z dxd e

dx e D

d

d

x

x e

ψ ψψ ψ −

−

−

−

≡

=

=

∫
∫
∫ ( )0 ( ) logdet) ( )(S xS D xx = −

1( )
 as the only dyn variable, 

                   compute  with direct solvers
  :  treat x

D x−
method 1

( )
( )2

( )

( )

( )

( )
 integration of flow eqs : 

i
i

i j
i j

z S z S z

z

z

z SS

 = ∂ ∂


= ∂ ∂ ∂ =


= 

 

＝
v v v v

1
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1 1 1
0

t r
tr tr

i i i

i j i j i j i j

S D D

S D D D DS D D

S −

− − −

 ∂ = ∂ − ∂

∂ ∂ = ∂ ∂ − ∂ ∂ + ∂ ∂

where

sparse direct method direct method
3): ( O Ncomput cost

 : use of real pseudofermionsmethod 2

(
)

(
)

(
)  x

x
ix x

A A
B B

 = 
  
 

= ⇔
= 

2 1( ) [ ( )?]comput cost : O N O N

flow

x

z

z′

v

′v

u

{ }N z=

main part

[24/39]

[MF-Namekawa 2507.23748, 2508.02659, in prep]

[MF-Namekawa 2507.23748, 2508.02659]

[MF-Namekawa, in prep]

[MF-Namekawa Lattice2024]



Real pseudofermion
0 0( ) ( ) ( ) det ( )x D x S xSZ dxd e dx e D xd ψ ψψ ψ − −−= =∫ ∫

( ) )( ()  (complex symmetric matrix)TD x D xM x ≡①

1
1/ 2 1

0
Re det 1( ) 0 If   for ,

1) 
2) 

A
M A iBi BA

−
−

 
 

>
=

 >  
+ + 

②

( ) : real pseudofermion ("Majorana" pseudofermion)ϕ

1
0 ( , )

1
0

( ) (1/2) ( )

1( ( ( )) )
2

,with  

T x

T

M SxS xZ dxd e dxd e

S x S Mx x

ϕϕ ϕϕ ϕ

ϕ ϕ ϕ

− −

−

−− =

≡ +

= ∫ ∫

1( ) compute  with iterative solversM z ϕ−④

( , ) path integral representation with dyn variable  :x ϕ③

Monte Carlo

can be realilzed by tuning
the redundant parameter α

[MF-Namekawa Lattice2024]

[25/39]

( ) 11/ 2 (1/2) ( )d t

det ( )

et ( ) de ( ) 
then  can be rewritten to the for
   

m
 

T M xD

D x

x M x d e ϕ ϕϕ
−−= = ∫

2 1( ) [ ( )?]comput cost : O N O N

[MF-Namekawa, in prep]



Computational cost scaling

elapsed time for 1 MD trajectory with a single core (flow time : fixed)

(1) direct solvers

(2) iterative solvers
w/ real pseudofermions

3N∝

2N∝
8 8,For size  

Etime(iterative) Etime(direct)
≥ ×

≤

[26/39]

[MF-Namekawa Lattice2024]



N^3 algorithm: observables (2D : 6x6, near T=0)

- ALF (well established MC code in cond-mat)

(20x6x6)

[27/39]

[MF-Namekawa 2507.23748, 2508.02659]

- For such parameters where ALF does not work,
  WV -HMC does work with small statistical errors

sign problem

[Assaad et al.]



N^3 algorithm: observables (2D : 6x6, near T=0)

[28/39]

[MF-Namekawa 2507.23748, 2508.02659]

- For such parameters where ALF does not work,
  WV -HMC does work with small statistical errors

(20x6x6)

sign problem

- ALF (well established MC code in cond-mat) [Assaad et al.]



N^3 algorithm: observables (2D : 6x6, near T=0)

[28/39]

[MF-Namekawa 2507.23748, 2508.02659]

- For such parameters where ALF does not work,
  WV -HMC does work with small statistical errors

(20x6x6)

sign problem

- ALF (well established MC code in cond-mat)

 effect (large)finite 

 effect (small)finite 

[Assaad et al.]



N^3 algorithm: observables (2D : 6x6, near T=0)

[29/39]

(20x6x6)

sign problem

 effect (large)finite 

[MF-Namekawa 2507.23748, 2508.02659, in prep]

WV

ALF

- For such parameters where ALF does not work,
  WV -HMC does work with small statistical errors

- ALF (well established MC code in cond-mat) [Assaad et al.]



N^3 algorithm: observables (2D : 6x6, near T=0)

- For such parameters where ALF does not work,
  WV -HMC does work with small statistical errors

tlarge finite  ef fec

(20x6x6)

[30/39]

sign problem

- ALF (well established MC code in cond-mat)

[MF-Namekawa 2507.23748, 2508.02659, in prep]

ALF

WV

 effect (small)finite 

[Assaad et al.]



N^3 algorithm: observables (2D : 8x8, near T=0)

(20x8x8)

[31/39]

[MF-Namekawa 2507.23748, 2508.02659]

- For such parameters where ALF does not work,
  WV -HMC does work with small statistical errors

sign problem

- ALF (well established MC code in cond-mat) [Assaad et al.]



N^3 algorithm: observables (2D : 8x8, near T=0)

[32/39]

[MF-Namekawa 2507.23748, 2508.02659]

- For such parameters where ALF does not work,
  WV -HMC does work with small statistical errors

(20x8x8)

- ALF (well established MC code in cond-mat)

sign problem

[Assaad et al.]
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Cauchy’s theorem for group manifolds (1/2)

( )†
( 1, , )Lie  : Lie alg of  with basis 

   a        t nd r
a

a a a b ab

G G T a N
T T T T δ

= …
= − = −

0
1
0 0( )Haar measure : NdU θ θ= ∧ ∧

[MF 2506.12002]
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∫




We want to evaluate the following path integral:

0

0( )
 : dynamical variable

 : complex action
U G
S U

∈ 
 ∈ 

dim ) : compact goup  : O( #D FG GN ≡

[33/39]

2 † 2
0 0 0( )bi-invariant metric : tr ads θ θ θ= =

1
0 0 0 0  : Maurer-Cartan 1-forma

ad TU Uθ θ− =≡

0  : vielbeinaθ

G
0U 0θ



Cauchy’s theorem for group manifolds (2/2)
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[34/39]

( )( )a
bE E=

 : complexification of GG

( )

{ , , ( ) }| ,

Lie     Lie
Lie
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G T G T

e ZG e e ZZ G′ ′′
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= ⊕ = ⊕
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

[MF 2506.12002]



Path integral over the worldvolume
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constrained molecular dynamics (RATTLE) on 
can be introduced in a similar way to the flat case
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one-site : SU(2) with a purely imag coupling

[36/39]
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analytic result: 2 1( ) / ( )e I Iβ β〈 〉 = −

numerical result (WV-HMC):
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one-site : SU(3) with a purely imag coupling
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analytic result:

numerical result (WV-HMC):
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one-site : U(2) with a topological term

[38/39]
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1. Introduction

2. Lefschetz thimble (LT) method
/ Generalized thimble (GT) method

3. Tempered Lefschetz thimble (TLT) method

4. Worldvolume Hybrid Monte Carlo (WV-HMC) method

5. Application to various models
5-1. Complex scalar at finite density
5-2. Chiral random matrix model
5-3. Hubbard model
5-4. Group manifolds
5-5. Real-time dynamics

6. Summary and outlook

[MF-Umeda 2017]

[MF-Matsumoto 2020]

[Alexandru et al 2017]

[Witten 2010, Cristoforetti et al. 2012,
Fujii et al. 2013]

[MF 2506.12002]

[MF-Namekawa Lattice2024]

[MF+, ongoing]

[MF-Matsumoto 2020]
[MF-Namekawa 2507.23748, 2508.02659, in prep]



Summary and outlook

[39/39]

▼Roadmap to finite-density QCD with WV-HMC :

▼ Developing the algorithm itself [MF, ongoing]

- incorporation of other algorithm(s)
(e.g.) path optimization and/or tensor RG (non-MC)

first-principles calculations of nonequilibrium processes
(such as the early universe, heavy-ion collision experiments, new devices, ... )

cf) TRG for 2D YM: 
  [MF-Kadoh-Matsumoto 2107.14149, ...]

local fields
(e.g. complex scalars)
group manifolds
(e.g. one-site model)

fermions
(e.g. Thirring, Stephanov, Hubbard)

pure YM
(e.g. w/ finite θ)

finite-density QCD
(w/ or w/o θ)

■Outlook

[MF, MF+, ongoing]

[MF, MF+, ongoing]

- incorporation of machine learning technique

■Summary：WV-HMC algorithm has been applied to various cases successfully

2( ) p

- exact reversibility
- exact volume preservation
- approximate energy conservation t   at on Do e M  steO s∆

[MF+, ongoing]
▼ Important in the near future : MC for real-time dyn of quant many-body systems

3( )H H O s′ = + ∆



Thank you.
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