

Angular Resolutions at the DIRC Update

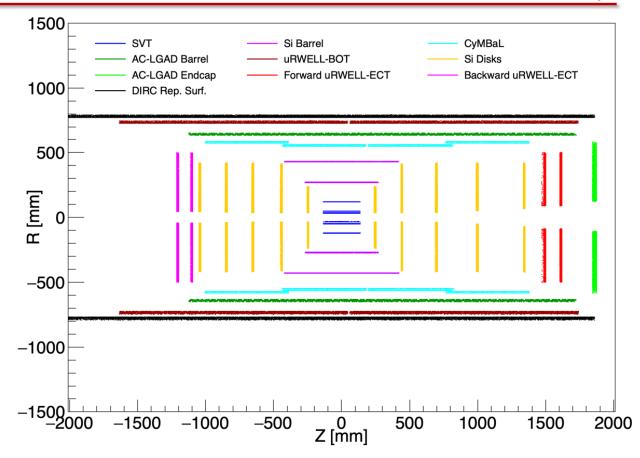
Matt Posik
Temple University

Outline

- Update on covariant error structure
- Material impact on angular resolutions
- Next Steps

Simulation Details

■ ePIC: 25.04.1

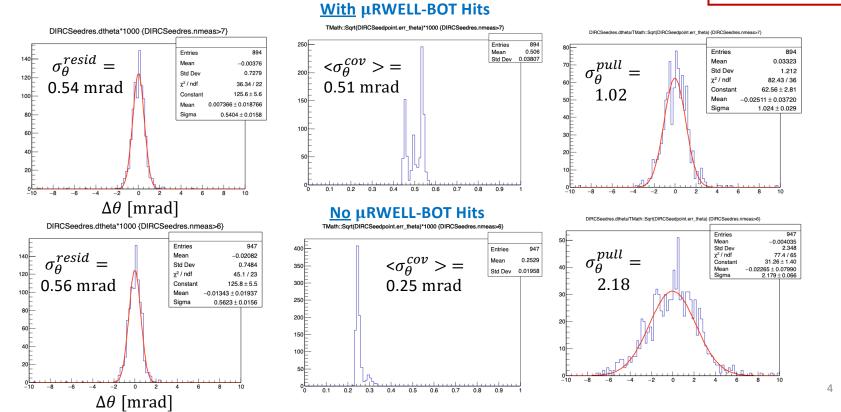

■ ElCrecon: v1.24.0

• π^- single particle

Fixed momenta values

$$\Delta\theta = 2^o, \ \Delta\phi = 360^o$$

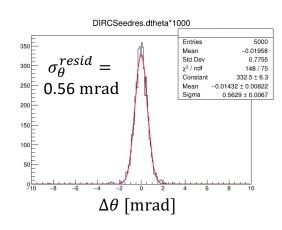
- Results shown for $\eta = -0.05$
- DIRC Reference SurfaceR = 770.5 mm
- All resolutions presented are with respect to R = 770.5mm surface
- Follow up from previous presentation


Resolution: µRWELL-BOT Hits

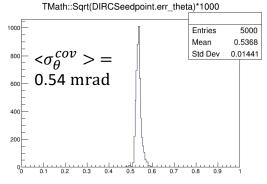
> Removing μRWELL-BOT hit collection from tracking.cc (hits not used in CKF, but material is there) removes peak structure

> Small change in residuals, but large change in covariance errors (?)

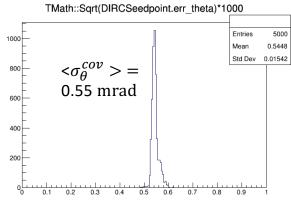
From last meeting

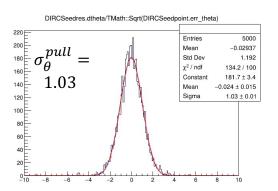


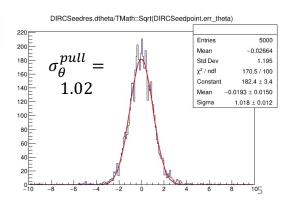
Resolution: µRWELL-BOT Hits



- > Add Acts::MaterialInteractor option to propagation algo (PR #1977)
- > Residuals and cov. errors are consistent


DIRCSeedres.dtheta*1000 $\sigma_{\theta}^{resid} = \int_{0.566}^{0.566} \int_{0.562\pm0.0066}^{0.566} \int_{0.562\pm0.0066}^{0.5662\pm0.0066} \int_{0.562\pm0.0066}^{0.562\pm0.0066} \int_{0.562\pm0.0066}^{0.562\pm0.0066} \int_{0.562\pm0.0066}^{0.562\pm0.0066} \int_{0.562\pm0.0066}^{0.562\pm0.0066} \int_{0.562\pm0.0066}^{0.562\pm0.0066} \int_{0.562\pm0.0066}^{0.562\pm0.0066} \int_{0.562\pm0.0066}^{0.562\pm0.0066} \int_{0.562\pm0.0066}^{0.5$

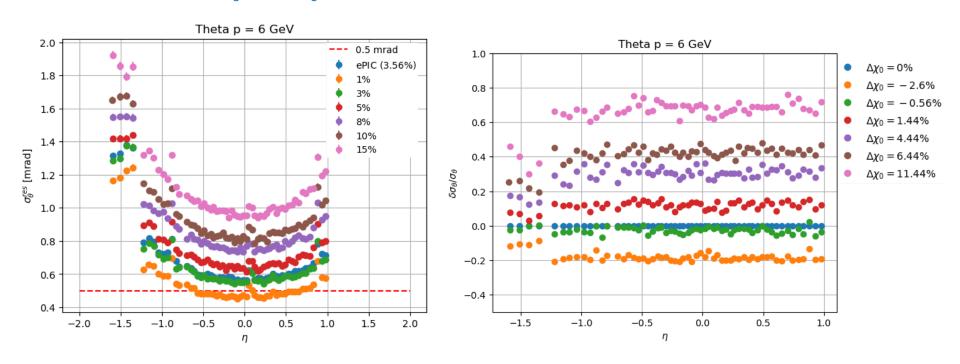



With µRWELL-BOT Hits

No μRWELL-BOT Hits

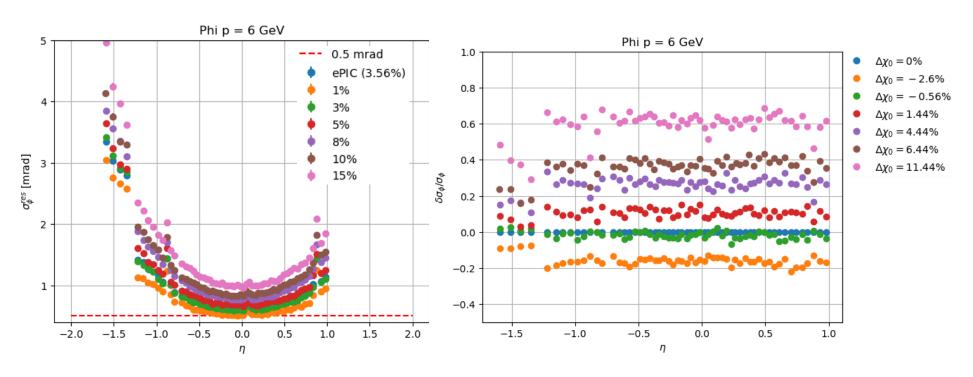
Material Impact on Angular Resolutions

- \Box Modify material budget of CF tube (InnerTrackingSupport_assembly, χ/χ_0 = 3.56%) to see impact on angular resolutions
- \Box CF material changed to Cu (χ_0 = 1.436 cm) for this study to avoid overlaps when increasing material budget
- ☐ Material map generated for each material budget change



Cylinder Thickness [cm]	X/Xo [%]
0.01436	1
0.04308	3
0.0718	5
0.11488	8
0.1436	10
0.2154	15

Material Impact on Angular Resolutions: Theta


$$\frac{\delta\sigma}{\sigma_0}=\frac{\sigma_i-\sigma_0}{\sigma_0}$$
 , $\sigma_0=$ resolution from official ePIC detector

Material Impact on Angular Resolutions: Theta

$$\frac{\delta\sigma}{\sigma_0}=\frac{\sigma_i-\sigma_0}{\sigma_0}$$
 , $\sigma_0=$ resolution from official ePIC detector

Summary

- ☐ Recent update to propagation navigator
 - > Resolves the structure in the covariance errors
 - > Covariance errors are now consistent with residuals
- ☐ Quantified material impact on angular resolutions at the DIRC

Next Steps

- ☐ Access impact of BIC on angular resolutions
- ☐ Add angular resolution calculation to official ePIC software stack
 - Add DIRC propagation planes into ElCrecon (ala calorimeter prop. planes)
 - EICrecon working branch
 - For residual method, need true momentum vector of particle passing through DIRC:
 Make DIRC bars sensitive or add thin reference plane (?)
 - Add benchmark that computes angular resolution via residual and cov error methods and their pull distribution.