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Chiral magnetic effect




Chiral Fluid

I Chiral MHD

EM fields

MHD = Magnetohydrodynamics



Systems described by chiral MHD

* Heavy-ion collisions

« For the CME search, reliable estimate of the life-
time of B is important

- Early Universe

» Weyl/Dirac semimetals



CME currents from

magnetic reconnections
[Hirono-Kharzeev-Yin, PRL'16]



Magnetic & fermionic helicities
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Magnetic helicity knows topology
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CME currents
from reconnections of B

[Hirono-Kharzeev-Yin PRL’16]
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Change of topology induces CME currents!




Formulation & waves
of chiral MHD

[Hattori-Hirono-Yee-Yin, in preparation]



Chiral MHD

* MHD & chiral MHD can be understood
as a low-energy effective theory
basing on derivative expansion

* A new anomaly-induced instability



EOM of MHD



EOM of MHD
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EOM of MHD

E* = F*u,, B = F*u,

F* = E¥y” — EYu — "B,
Y = BFfuY — B"u" + " E,

Hre = cpvap Ug



Hydrodynamic variables

* Parameters characterizing local thermal equilibrium

 Neutral fluid with — rpy 0y it () ()

a conserved charge

+ MHD {I'(x), u(x), B"(x)}

# of hydro variables = # of equations =7



No electric field in the fluid frame
In Ideal MHD

E) =

Correspond to large conductivity limit

O



Constitutive relation for ideal MHD
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CME doesn't play any role in ideal MHD!
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Why?
Constitutive relation doesn't determine the current

I :;71;7“ o BH
O 0

Current is determined by the Maxwell equation

=9, Fr R = Py B

Chiral magnetic conductivity never appears in EOM
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Conservation of topology of B

 Fluxis “frozen in” to the fluid
* Magnetic helicity is conserved in ideal MHD
* No reconnection

h“ — F“VAV : helicity current
0,hly = 2F"F,, =8E"B, =0

H = /dgmh% IS conserved



First order in derivative expansion

Using the second law,
Ttl(t)z(l) — CA’UV8°U‘|—277V<'“UV>

F*: C-odd, P-odd
1

Ef) = EEWC%,/()*@(ﬁBﬁ) — egB*

O : electric conductivity
OB
o)

€Eg = O B : chiral magnetic conductivity



First order in derivative expansion
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Waves in chiral MHD

* Linear fluctuations - 6 modes in total

e — e+ oe,

B — B+ 08B,
ut — ut + ou”,

b — b* + ob”.



Alfven wave

—> restoring force

momentum along the background B

magnetic field line

Dispersion relation W — UA]C‘ |
BQ
e +p+ B?

vi — Alfven velocity
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Alfven wave In dissipative MHD

Dispersion relation

W———UAkH > 1+ Al K

damping
1
A= - O : electric conductivity
i = 4 7] : shear viscosity

e+ p + B?



Alfven wave in chiral MHD

Including CME (when k < B)

AV
CME
s — 1 indicates the helicity of the mode

ik x e'*) = ske'®

helicity eigenstate

Instability in one of the helicity modes
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Stability of the waves

2 stable waves
+2 diffusive mode

+2 unstable mode

4 stable waves

+2 unstable waves

6 stable waves

1 1 1 1 1 1 1 1
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Toward numerical impl. of chiral MHD

with Mace, Kharzeev, Inghirami et.al.

» Collaborating with ECHO-QGP

* Implement:
* Finite resistivity + anomalous effects
* Pre-equilibrium CME currents
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Machine-learning CME

[Hirono-Kharzeev-Mace, in progress]
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Observables for CME
- gamma correlation  Yag = <COS(¢({‘ + ¢ — 2\1/RP)>

» Can pick up two-particle correlations
unrelated to charge separation (“non-flow”)

fap(P1, P2) = fa(D1) f3(D2) + f;B(pMPQ)
1

Ny ——

N




Backgrounds

* Flowing resonances [Voloshin PRC’04]
[F. Wang PRC’10]

» Local charge conservation + flow
[Schlichting-Pratt, PRC’11]

[Pratt-Schlichting-Gavin PRC’11]

» Transverse momentum conservation
[Bzdak-Koch-Liao PRC’10, PRC’11]
[Pratt-Schlichting-Gavin PRC’11]

. U2
Those all contribute as ~ —

N
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Machine-learning CME

[Hirono-Kharzeev-Mace, in progress]

- How to separate of signal & background is a big problem
- Gammas - include contributions from background effects
* There can be better observables

» Less sensitive to background effects



Machine-learning CME

[Hirono-Kharzeev-Mace, in progress]

« Use neural network to learn the feature of CME

- Training (parameter tuning)

Neural Network

- Applied for detection of first-order PT
[Pang-Zhou-Su-Petersen-Stocker-Wang 1612.04262]
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Data preparation & learning

Supervised learning

Raw event data (momenta of each particle)
* Fireball

« With charge separation (about 1% in al)

* Without charge separation
* Produce particle via Cooper-Frye prescription
* Perform resonance decay

Charge-dependent distributions
* One-particle distributions
* Multi-particle distributions

Use Keras + Tensorflow
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with fixed direction of charge separation
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Machine-learning CME

* Machines can detect CME well for the single-
particle net-charge distribution (averaged over a
certain number of events), when the direction of
charge separation is fixed

* We are testing this method for two-particle
charge-dependent corr.
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Summary
1. B-field topology & CME currents

- Reconnections generate CME currents

2. Chiral MHD

- CME appears in the first order P-odd correction
- Helicity dependent instability
- Numerical implementation is under way

3. Machine learning CME

- Use of neural network for a better observable



