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Chiral magnetic effect
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Chiral Fluid 

EM fields

Chiral MHD

MHD = Magnetohydrodynamics



Systems described by chiral MHD

• Heavy-ion collisions
• For the CME search, reliable estimate of the life-

time of B is important

• Early Universe

• Weyl/Dirac semimetals
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CME currents from 
magnetic reconnections 
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[Hirono-Kharzeev-Yin, PRL’16]



Magnetic & fermionic helicities

Magnetic helicity Fermionic helicity
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Self-linking number Linking number

Magnetic helicity knows topology
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CME currents  
from reconnections of B
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Change of topology induces CME currents!

[Hirono-Kharzeev-Yin PRL’16]



Formulation & waves
of chiral MHD
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[Hattori-Hirono-Yee-Yin, in preparation]



Chiral MHD
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• MHD & chiral MHD can be understood  
as a low-energy effective theory  
basing on derivative expansion

• A new anomaly-induced instability



EOM of MHD
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EOM of MHD
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EOM of MHD
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Hydrodynamic variables

• Parameters characterizing local thermal equilibrium
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• Neutral fluid with  
 a conserved charge

• MHD

# of hydro variables  =  # of equations = 7



No electric field in the fluid frame  
in ideal MHD
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No	  electric	  field!

Correspond to large conductivity limit
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Constitutive relation for ideal MHD

CME doesn't play any role in ideal MHD!



Why?
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Constitutive relation doesn't determine the current

Chiral magnetic conductivity never appears in EOM

Current is determined by the Maxwell equation
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Conservation of topology of B
• Flux is “frozen in” to the fluid
• Magnetic helicity is conserved in ideal MHD
• No reconnection 

is conserved

: helicity current



First order in derivative expansion
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: electric conductivity

: C-odd, P-odd

Using the second law, 

: chiral magnetic conductivity

CME



First order in derivative expansion
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Waves in chiral MHD
• Linear fluctuations - 6 modes in total

22



Dispersion relation

Alfven wave

magnetic field line

restoring force
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Alfven velocity

momentum along the background B



Dispersion relation

Alfven wave in dissipative MHD

: shear viscosity
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damping

: electric conductivity



Including CME (when              )

Alfven wave in chiral MHD
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CME
indicates the helicity of the mode

helicity eigenstate

Instability in one of the helicity modes



Stability of the waves
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B
k



Toward numerical impl. of chiral MHD
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• Collaborating with ECHO-QGP
• Implement:

• Finite resistivity + anomalous effects
• Pre-equilibrium CME currents

with Mace, Kharzeev, Inghirami et.al.



B-field evolution
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Machine-learning CME
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[Hirono-Kharzeev-Mace, in progress]



Observables for CME

• gamma correlation
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• Can pick up two-particle correlations  
unrelated to charge separation (“non-flow”)



Backgrounds

• Flowing resonances 

• Local charge conservation + flow

• Transverse momentum conservation
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[Voloshin PRC’04]

[Bzdak-Koch-Liao PRC’10, PRC’11]

[F. Wang PRC’10]

[Schlichting-Pratt, PRC’11]

[Pratt-Schlichting-Gavin PRC’11]

[Pratt-Schlichting-Gavin PRC’11]

Those all contribute as 



Machine-learning CME
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• How to separate of signal & background is a big problem

• Gammas - include contributions from background effects

• There can be better observables

• Less sensitive to background effects

[Hirono-Kharzeev-Mace, in progress]
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• Use neural network to learn the feature of CME

• Training (parameter tuning)

Neural NetworkInput data Answer

Cat

• Applied for detection of first-order PT
[Pang-Zhou-Su-Petersen-Stöcker-Wang 1612.04262]

Machine-learning CME
[Hirono-Kharzeev-Mace, in progress]



Data preparation & learning
• Supervised learning
• Raw event data (momenta of each particle)
• Fireball
• With charge separation (about 1% in a1)
• Without charge separation

• Produce particle via Cooper-Frye prescription
• Perform resonance decay

• Charge-dependent distributions
• One-particle distributions
• Multi-particle distributions

• Use Keras + Tensorflow
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- One event
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- Averaged over 2000 events 
  with fixed direction of charge separation



Machine-learning CME
• Machines can detect CME well for the single-

particle net-charge distribution (averaged over a 
certain number of events), when the direction of 
charge separation is fixed

• We are testing this method for two-particle 
charge-dependent corr. 
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Summary
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1. B-field topology & CME currents
  - Reconnections generate CME currents

2. Chiral MHD  
- CME appears in the first order P-odd correction  
- Helicity dependent instability 
- Numerical implementation is under way

3. Machine learning CME 
- Use of neural network for a better observable


