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A Critical EoS for QCD

The task

I Current knowledge of QCD EoS (from first principles) at finite µB is
a Taylor expansion from Lattice QCD around µB = 0, up to O(µ6B):

PQCD = T 4
∑
n

cn(T )
(µB
T

)n
, cn(T ) =

1

n!

∂(P/T 4)

∂(µB/T )

∣∣∣∣
µB=0

I An EoS for QCD including critical behavior would be an important
ingredient in hydrodynamical simulations of heavy ion collisions

I The expected critical behavior of QCD is in the same static
universality class as 3D Ising model

⇒ Build an EoS that matches Lattice QCD results and
includes the correct critical behavior
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A Critical EoS for QCD

The strategy

I Choose a suitable parametrization for the scaling EoS of 3D Ising
model

I Define a mapping of the 3D Ising phase diagram onto the QCD one

I Use 3D Ising EoS to estimate critical contribution to cn(T ):

cn(T ) = cnreg(T ) + cncrit(T )

I Expand over the whole phase diagram:

P(T , µB 6= 0) = T 4
∑
n

cnreg(T )
(µB
T

)n
+ f (T , µB)Pcrit (T , µB)

where f (T , µB) is a regular function of T and µB , with dimension 4.
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Scaling EoS for 3D Ising model

Scaling EoS can be given in parametric form for magnetization M,
magnetic field h and reduced temperature r = (T−TC )/TC in 3D Ising
model:

(R, θ) 7−→ (r , h) :

M = M0 R
βθ

h = h0 R
βδh̃(θ)

r = R(1− θ2)
where:

I M0, h0 are normalization constants;

I h̃(θ) = θ(1 + a θ2 + b θ4) with (a = −0.76201, b = 0.00804);

I R ≥ 0 and |θ| ≤ 1.154 (second zero of h̃(θ));

I β ' 0.326, δ ' 4.80 are critical exponents.

C. Nonaka and M. Asakawa, Phys.Rev. C71 (2005) 044904, R. Guida and J. Zinn-Justin, Nucl.Phys. B489 (1997)
626-652, P. Schofield, Phys. Rev. Lett. 23 (1969) 109
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Scaling EoS for 3D Ising

Construct (Helmoltz) and thus Gibbs free energy densities:

F (M, r) = h0M0R
2−αg(θ) −→ G (r , h) = F (M, r)−Mh

Thanks to the map:

(R, θ) 7−→ (r,h)←→ (T, µB)

we can write the pressure in QCD as:

PQCD
crit (T , µB) = −G (T (R,θ), µB(R,θ)) = h0M0R

2−α
[
g(θ)− θh̃(θ)

]
NOTE: Explicit functional form of G (T (R,θ), µB(R,θ)) ONLY as a function of

(R, θ). Evaluation will require numerical inversion of :

T (R, θ) = T ∗ µB(R, θ) = µ∗B

C. Nonaka and M. Asakawa, Phys.Rev. C71 (2005) 044904, R. Guida and J. Zinn-Justin, Nucl.Phys. B489 (1997) 626-652
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Map the phase diagram

Relation between scaling variables (h, r) and thermodynamic coordinates
(T , µB) can be expressed in linear form, and needs 6 parameters:

(r , h) 7−→ (T , µB) : T = TC + r sinα1∆µBC + h sinα2∆TC

µB = µBC − r cosα1∆µBC − h cosα2∆TC
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Map the phase diagram

Re-write the mapping:

T − TC = ∆TC

(
r sinα1

∆µBC

∆TC
+ h sinα2

)
µB − µBC = ∆TC

(
−r cosα1

∆µBC

∆TC
− h cosα2

)
∆TC

TC
= w

∆µBC
∆TC

= ρ

Then:
T − TC

TC
= w (rρ sinα1 + h sinα2)

µB − µBC

TC
= w (−rρ cosα1 − h cosα2)

I w and ρ determine, in a non trivial manner, the size and shape of
the critical region
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Map the phase diagram

Comments on the parameters

I The purpose of the project is to exploit the parametric nature of the
EoS, in order to use theoretical arguments and future BES-II
experimental data to constrain the value of the parameters.

I While some of the parameters have a straightforward interpretation,
others’ role is less intuitive

I How is the choice of the parameters driven?
I From Lattice QCD: TC . 150 MeV, µBC ≥ 2TC , α1 somewhat

constrained by choice of TC , µBC

I We would like to place the critical point in the region of the phase
diagram accessible to BES-II

For illustrative purpose: a choice of parameters

α1 = π/30 TC = 140 MeV w = 1

α2 = π/2 + π/30 µBC = 350 MeV ρ = 2
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The critical pressure

The scaling form of the pressure mapped onto the QCD phase diagram.

NOTE: symmetrized around µB = 0 in order to ensure cn(T ) = 0,∀n odd
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Matching the Lattice

We make the simple choice f (T , µB) = T 4
C for the normalization of Pcrit , and

then define:

cnLAT(T ) = cnreg(T ) + T 4
C cncrit(T ) .

Remembering the map:

(R, θ) 7−→ (r , h)←→ (T , µB)

one can express any derivative of the critical pressure over the whole phase
diagram:

P(T , µB = 0) = −G (T (R, θ), µB(R, θ) = 0)

n! cn(T , µB = 0) = −
(
∂G

∂µB

)
T

∣∣∣∣
µB=0
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Matching the Lattice: 0th order

I The cnreg resulting from this procedure might be negative, if the critical
contribution exceeds the Lattice results

R. Bellwied et al., Phys. Rev. D 92, 114505

I If this happens, for one or more of the Taylor coefficients, it might result in
the pressure being negative (or pathologically behaved) for some value of
T , µB , and will therefore be discarded
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Matching the Lattice: 2th order

The full expression for the second coefficient is:

2! c2(T , µB = 0) = −
(
∂2G

∂r 2

)
h

(
∂r

∂µB

)2

−
(
∂2G

∂h2

)
r

(
∂h

∂µB

)2

− 2
∂2G

∂h∂r

∂h

∂µB

∂r

∂µB

R. Bellwied et al., Phys. Rev. D 92, 114505
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Matching the Lattice: 4th order

And for the fourth coefficient is:

4! c4(T , µB) = −
(
∂4G

∂r 4

)
h

(
∂r

∂µB

)4

−
(
∂4G

∂h4

)
r

(
∂h

∂µB

)4

− 4
∂4G

∂h3∂r

(
∂h

∂µB

)3
∂r

∂µB
+

− 4
∂4G

∂h∂r 3
∂h

∂µB

(
∂r

∂µB

)3

− 6
∂4G

∂h2∂r 2

(
∂h

∂µB

)2 (
∂r

∂µB

)2

R. Bellwied et al., Phys. Rev. D 92, 114505
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Critical EoS: the total pressure

With these ingredients, one can build the total pressure:

P(T , µB) = T 4
∑
n

cnreg(T )
(µB
T

)n
+ T 4

C Pcrit (T , µB)
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Critical EoS: some comments

By construction, the reconstructed EoS will have the pressure and its
derivatives wrt µB match Lattice QCD at µB = 0. However, it will need
to satisfy thermodynamical conditions.

Constraints on the parameters

I Systematically span the space of parameters, requiring that
thermodynamic inequalities are satisfied at all (T , µB)

I Positivity of pressure, entropy density, baryon density + further
conditions on second order derivatives

I NOTE: a rigorous analysis of thermodynamical inequalities will need
the analysis of uncertainties from Lattice QCD data

I The application of the EoS to fluid dynamical simulations will
produce results that can further constraint the choice of parameters
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Determine the size of the critical region

Comparing the critical contribution to χ2(T , µB) with the Taylor
reconstruction from Lattice can give us an idea of the size and shape of
the critical region for different w , ρ:

χLAT
2 (T , µB)− χcrit

2 (T , µB)

In yellow the region where the critical contribution exceeds the Lattice one.

⇒ A smaller value of w corresponds to a larger critical contribution and
a larger critical region
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Summary

Comments

I By means of a parametrized form of the scaling EoS and a non
universal mapping of the scaling variables onto QCD coordinates, it
is possible to build an expression for the pressure and any derivative
over the whole phase diagram

I The choice of some parameters can be somehow driven by what is
already known, but for others a systematic analysis will be necessary

I The interplay of many different conditions on the EoS can result in a
strong constraint on (among others) the location of the critical point
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Outlook

Further improvements

I Run a systematic analysis over the space of parameters of the
non-universal mapping

I Already explored many values of w , ρ (w = 0.1, 0.2, ..., 3, ρ = 2, 4, 8),
and the role of the angles

I Include 6th order coefficient from Lattice in the expansion

I Include temperatures down to T < 100 MeV (needed for hydro
simulations)

I For temperatures below the reach of Lattice, one can rely on a
smooth merging with models (e.g HRG model)

I Systematically perform the analysis of thermodynamical inequalities
carefully including uncertainties from Lattice data
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BACKUP
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Exploring the parameters space
Matching the Lattice: 0th order
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Exploring the parameters space
Matching the Lattice: 2th order
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Exploring the parameters space
Matching the Lattice: 4th order
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Exploring the parameters space
The reconstructed pressure

23 / 33



Exploring the parameters space
The reconstructed pressure
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Exploring the parameters space
The reconstructed pressure
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Temperatures below the reach of Lattice QCD
Matching the Lattice: 0th order
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Temperatures below the reach of Lattice QCD
Matching the Lattice: 2th order

27 / 33



Temperatures below the reach of Lattice QCD
Matching the Lattice: 4th order
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Smoothing out Lattice data
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Determine the size of the critical region

In yellow the region where the critical contribution exceeds the Lattice one.
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Determine the size of the critical region

In yellow the region where the critical contribution exceeds the Lattice one.
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Determine the size of the critical region

In yellow the region where the critical contribution exceeds the Lattice one.
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Determine the size of the critical region

In yellow the region where the critical contribution exceeds the Lattice one.
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