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Introduction and Motivation
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Critical Point: From QCD to Ising Theory

• Coordinate mapping: (∆µB,∆T ) −→ (t,H).

QCD phase diagram

(The 2015 Long Range Plan for Nuclear Science)

Mapping of critical region

(C. Nonaka and M. Asakawa, 2005)
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Mean-field Equation of State
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Mean-field EoS

• In terms of conveniently rescaled variables Φ and H, the scalar Φ4

theory in d dimensions can be defined by the Euclidean action

S =
6

u0

∫
ddx

[
1

2
(∂µΦ)2 + V (Φ)

]
,

with the potential

V (Φ) =
t

2
Φ2 +

1

4
Φ4 − HΦ.

• When u0 → 0, saddle-point method could be applied, which yields the
mean-field equation of state (EoS), V ′(M) = 0, i.e.,

H = tM + M3.

• In terms of the properly renormalized scaling variables

w = Ht−βδ and z = Mt−β

where β = 1/2, δ = 3, the EoS can be expressed as

w = z(1 + z2).
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LY edge Singularities and Spinodal Points

• According to the Lee-Yang Theorem (T.D. Lee and C.N. Yang, 1952), in the high-t
phase, the EoS features a pair of branch cuts, the Lee-Yang (LY) cuts,
which terminate at the Lee-Yang (LY) edge singularities, where the
isothermal susceptibility diverges (i.e., w ′(z) = 0) and one can find

wLY = ± 2i

3
√

3
.

• The low-t images of the LY points are called spinodal points, i.e.,

Hsp = ±wLYt
3/2, t < 0.
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Analytic Continuation to Low-t Phase

• Starting from any point on the Riemann surface in the stable high-t
phase, one can analytically continue the high-t EoS to the low-t phase
by rotating an angle πβδ.

w

principal (t > 0)

w

metastable
t < 0 H < 0( , )

stable
t < 0 H > 0( , )

Analytic continuation to low-t phase in mean-field approximation

• The metastable low-t phase is reached by an additional rotation by an
angle π.
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Beyond the Mean-field Equation of State
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Singularities Beyond the Mean-field EoS

• The mean-field EoS doesn’t capture a weak essential singularity at
H = 0 associated with the Langer cut (−∞, 0] (J.S. Langer, 1967) in complex

H plane. ImM ∼ exp
(
− const

u0|w |3

)
for H → 0 and d → 4.

• For d < 4, the mean-field approximation no longer applies and the
“gap” critical exponent βδ > 3/2. Accordingly, the spinodal points,

Hsp = wLYt
βδ = ±|wLYt

βδ|e±i∆φ, t < 0,

shift from the real H axis (Langer cut) by an angle

∆φ = π(βδ − 3/2).

w

principal (t > 0)

wΔϕ

ancillary

w

met
asta
ble

t <
0 H

< 0

(
,

)

stab
le

t <
0 H

> 0

(
,

)

Analytic continuation to the low-t phase beyond mean-field approximation
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FZ Conjecture

• Standard Analyticity Assumption: Mt<0(H) is analytic in full complex
H plane with Langer cut.

• Fonseca-Zamolodchikov (FZ) Conjecture (P. Fonseca and A. Zamolodchikov, 2001):
M(t), connected with M(H) via scaling relation H ∼ tβδ, is analytic
in full complex t plane with LY cuts.

• According to the FZ conjecture, the spinodal points are the nearest
singularities under the Langer cut.

H

ancillary
Δϕ

H

metastable stable

FZ conjecture
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Ginzburg Criterion

• The LY edge singularities are described by the Φ3 theory (M.E. Fisher, 1978),
by shifting the field such that the quadratic term of the Φ4 theory
vanishes, which is non-mean-field like for d < 6.

• The cubic fluctuation is negligible when

|w − wLY| � (ũ0)4/(6−d),

where ũ0 ≡ u0t
−(4−d)/2 is the dimensionless quartic coupling. This

condition is similar to the Ginzburg criterion in the theory of
superconductors.

• Small ε (= 4− d) limit:

|w − wLY| � ε2.
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Complex Singularities of Φ4 Theory
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EoS for d = 4− ε

• To order ε2, the “gap” exponent is given by (E. Brezin et al, 1972)

βδ =
3

2
+

1

12
ε2 +O(ε3),

and the scaling function F (z) reads (B.G. Nickel, 1972)

F (z) =
∞∑
n=0

Fn(z)εn,

with F0(z) = z + z3, etc.

• F (z) is valid for small z hence cannot be applied to the full scaling
regime.
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Parametric Representation of scaling EoS

• In terms of the resummed critical exponents, the scaling EoS could be
parametrized to match the ε expanded EoS, while the analyticity is
manifest in the full scaling regime.

• JS Parametric Representation (B. Josephson and P. Schofield, 1969):
t(R, θ) = Rk(θ),

M(R, θ) = Rβm(θ),

H(R, θ) = Rβδh(θ),

where k(θ) = 1− θ2,m(θ) = m̄θ, h(θ) = h̄(θ + h3θ
3).

• The scaling variables w and z can be expressed in terms of θ alone,
i.e.,

z =
z̄ θ

(1− θ2)β
and w =

w̄ (θ + h3θ
3)

(1− θ2)βδ
.

m̄, h̄, z̄ and w̄ are normalization factors depending on ε.
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Singularities of the Parametric EoS

• Now we arrive at the scaling form for the inverse susceptibility

F ′(θ) =
w ′(θ)

z ′(θ)
=

w̄

z̄
(1−θ2)−γ

1 + (2βδ + 3h3 − 1) θ2 + (2βδ − 3)h3θ
4

1− (1− 2β)θ2
.

• The poles/zeros of F ′(θ) must have the following form

θ2
n =

cn
ε

[1 +O(ε)] .

• The corresponding poles/zeros can be expressed as

wn = ±2i (−ĉn)
3
2
−βδ

3
√

3

{
1+O(ε2)

}
,

where ĉn ≡ cn/|cn|.
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Singularities of the Parametric EoS

• In complex w plane, poles (n = 0) and zeros (n = 1, 2, ...) could
either reside on imaginary axis or shift from it by an angle ∆φ
nonperturbatively, which, in the spirit of padé approximation,
indicates the existence of Langer cut.

○○w0

w1
w2

Δϕ

w

O(ε2)

○○w0

w1
w2

w3

Δϕ

w

O(ε3)

• ∆φ ∼ O(ε2) while nonperturbative domain |w − wLY| ∼ O(ε2) =⇒
FZ conjecture cannot be verified since we can not rule out possible
singularities in the angle ∆φ.
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Singularities in the O(N) Theory: N →∞

• In the N →∞ limit the critical exponents are known (E. Brezin, 1972)

β =
1

2
, δ =

d + 2

d − 2
, and γ =

2

d − 2
, for 2 < d < 4.

• Now ∆φ = πβδ ∼ O(ε), compared to which the nonperturbative
domain |w − wLY| ∼ O(ε2) is negligible.
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Singularities in the O(N) Theory: N →∞
• The scaling EoS is determined as

F (z) = z(1 + z2)γ .

• The solutions of F ′(z) = 0 turn out to be

z2
G = −1, wG = 0 and z2

LY = − 1

1 + 2γ
, wLY = ±i (2γ)γ

(1 + 2γ)βδ
.

wG is the Goldstone mode induced singularity associated with the
Goldstone cuts. ImM ∼ H(d−2)/2 for H → 0 and t < 0.
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Nonperturbative (FRG) Approach to LY Edge Singularity

• From functional renormalization group (FRG) analysis we determined
the scaling properties (critical exponents) of LY edge singularity
between 3 ≤ d ≤ 6 (XA, D. Mesterházy and M. Stephanov, JHEP 1607 (2016) 041).

σ(d) νc (d)

• Compare σ with those obtained from other methods:

Dimension FRG 4-loop ε exp. strong coupling MC conf. bootstrap

3 0.0742(56) 0.0747 0.076(2) 0.080(7) 0.085(1)
4 0.2667(32) 0.2584 0.258(5) 0.261(12) 0.2685(1)
5 0.4033(12) 0.3981 0.401(9) 0.40(2) 0.4105(5)
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Summary and Discussion
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Summary

• Beyond mean-field approximation the spinodal points lie off the real
H axis.

• The nonperturbative regions around the LY edge singularities,
governed by Φ3 theory, are determined by the Ginzburg criterion.

• FZ conjecture is valid for the O(N) theory in the large-N limit.
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Discussion

• The lack of spinodal singularities at real H may be interpreted as the
expression of the fact that the correlation length does not have time
to develop due to the decay of the metastable state via nucleation,
which differs from the mean-field case where the decay rate is
suppressed by vanishing quartic fluctuation.

• The absence of singularities on the real H axis (except H = 0) could
have implications for the behavior of systems undergoing cooling past
the first-order phase transition separating hadron gas and QGP phases
of QCD associated with the QCD critical point, which is being
searched for using the BES heavy-ion collision experiments.
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Thank You
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Backup
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Riemann Surface of the Scaling Mean-field EoS
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Riemann surface of w = z(1 + z2)

(d > 4, mean-field)

Riemann surface of w = z(1 + z2)2

(d = 3, N →∞)



Riemann Surface of the O(N) Theory, N →∞

• For 3 ≤ d ≤ 4, the structure of the Riemann surface of z(w) relies on
the value of βδ.

w

principal (t > 0)

wΔϕ

ancillary

w

met
asta
ble

t <
0
H < 0

(
,

)

stab
le

t <
0
H > 0

(
,

)

w

t > 0

wΔϕ

ancillary

w

t < 0

Riemann surface for 3 ≤ d ≤ 4

• For 2 < d < 3, the structure of Riemann surface is much more
complicated (i.e., with more Goldstone cuts and ancillary sheets).
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1/N Correction

• The 1/N corrections can be expressed in terms of momentum
integrals coming from a series of bubble diagrams at that order (E. Brezin

et al, 1972; R. Abe et al, 1977):

F (z) = z
(
1 + z2

)γ {
1 +O(N−1)

}
. (1)

• When d = 3, the aforementioned momentum integrals yield only two
branch points at z2 = −1 and z2 = −1/5, which coincide with the
same singularities already found in the N →∞ limit, while the
position of the corresponding points in the complex w plane is shifted
by an amount of order 1/N.
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FRG Approach to LY Edge Singularity

• We employ the following ansatz for the scale-dependent effective
action, where higher order truncations are not negligible:

Γk [ϕ] =

∫
x

{
Uk(ϕ) +

1

2

[
Zk(ϕ)(∂µϕ)2 + W a

k (ϕ)(�ϕ)2

+ W b
k (ϕ)(∂µϕ)2 �ϕ+ W c

k (ϕ)
(
(∂µϕ)2

)2
]}

.
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FRG flows Contributing diagrams to nonperturbative vertex functions
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