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Non-zero-range interactions are often incorporated into mean field theories through gra-

dient terms. Here, a formalism is developed to incorporate such terms into hydrodynamics.

These terms alter expressions for the entropy, chemical potential, temperature and the stress-

energy tensor. The formalism respects local conservation of energy, charge and entropy. The

formalism leads to static solutions where the temperature, chemical potential and hydrody-

namic acceleration all vanish, even when the density profile might be non-uniform. Profiles

for a phase boundary and for correlation functions are calculated to illustrate the gradient

modifications for various thermodynamic quantities. Also, for hydrodynamic calculations

that add thermal noise to generate density-density correlations of the desired strength, an

additional noise term is derived so that, at equilibrium, correlations are generated with both

the correct size and length scale.
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I. INTRODUCTION

Mean field theory, or Landau theory, for thermal systems typically consider the free energy

density to be a function of the temperature, density and density gradients [1],

f(r) = f̄(T, ρ(r))− κ

2
ρ∇2ρ. (1)

The gradient term is physically motivated by short, but non-zero-range attractive interactions. For

a given particle, the effective number of neighbors within the range of the interaction differs from

a uniform background, and if the curvature, ∇2ρ, is positive the effective number of neighbors

increases relative to a uniform density profile and the free energy is reduced. Mean field theory

can be applied to numerous systems, such as the liquid-gas transition, where ρ is the density, or

to problems in magnetization, where ρ is replaced by the local magnetization. In nuclear physics,

mean field pictures have been applied to understanding the surface profiles between phases. This

includes the nuclear liquid-gas phase transition [2], between the quark-gluon plasma and hadronic

phases at zero baryon density [3, 4] (now known not to exist as there is no first-order phase tran-

sition), and between chiraly restored and broken phases at high baryon density and temperature

[5] (hypothesized to exist [6]). In general, such methods can be applied to describe correlations

near any critical point [1], and though the critical exponents are not correct for three-dimensional

systems at the critical point, as can be seen by the Ginzburg criteria [1], should be a good de-

scription away from the critical point and should not differ qualitatively even close to the critical

point. In nuclear structure calculations gradient terms are also often applied to density functional

theory[7], where the potential used for the Schrödinger equation becomes a function of both the

density and the its gradients. Gradient terms have been applied to hydrodynamic treatments of

spinodal decomposition for the chiral transition [8–11] and the liquid-gas transition [12, 13], but

not in a way where all thermodynamic quantities are consistently altered. Similar effects have

been taken into account in Boltzmann transport by using a non-zero range to calculate the density

used to generate local potentials [14–18]. Hybrid approaches have coupled hydrodynamics to mean

field dynamics, e.g. for scalar fields related to chiral symmetry, and in those approaches gradi-

ent terms come into play for the fields [19]. Larger gradient terms more strongly disfavor sharp

changes in the order parameter, and result in larger surface energies, longer correlation lengths,

larger nucleation barriers, and larger damping for the growth of short wavelength unstable modes

in hydrodynamically unstable regions.

Our goal here is to incorporate these effects into a dynamic theory, hydrodynamics, and to

determine how to consistently apply gradient modifications to all thermodynamic quantities: tem-
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perature, entropy density, chemical potentials and the stress-energy tensor. Hydrodynamics plays

a critical role in the modeling of relativistic heavy-ion collisions [20]. Fluctuations and related

correlations have been measured at the Relativistic Heavy-Ion Collider (RHIC) and for heavy-

ion collisions at the LHC [21–30], where they play an important role in understanding the phase

structure and chemistry of the highly excited matter created in these collisions. For example,

correlations driven by local charge conservation [31, 32] appear especially promising for making

comparison to charge fluctuations extracted from lattice gauge theory [33, 34] and [35].

Correlations of transverse energy and momentum provide insight into thermodynamic prop-

erties, diffusion and initial state fluctuations such as those from jets [36–45]. Correlations from

charge conservation also play an important role for understanding the background for measure-

ments related to the chiral magnetic effect [44, 46, 47]. As the field works to consider the growth of

thermal fluctuations, especially those related to phase structure as near a critical point, gradient

terms are important in modeling both the size and spread of correlations.

In hydrodynamics the evolution is driven by local conservation of the stress energy tensor,

∂µT
µν = 0. (2)

In the fluid rest frame T 00 is the energy density ϵ, T 0i are the momentum densities, and Tij

represents the pressure tensor and is typically a function of ϵ and the charge density ρ. For ideal

hydrodynamics Tij = Pδij in the fluid’s rest frame (we use Roman indices to indicate the spatial

indices), and the pressure P is a function of ϵ and ρ. Non-diagonal terms then appear when the

tensor is viewed in a frame where the fluid moves with a velocity v. Once the initial conditions are

set, the ensuing evolution is determined by P (ϵ, ρ). The entropy within a co-moving cell is fixed.

Entropy and temperature are key concepts of thermal systems, but do not necessarily appear in the

equations because the hydrodynamic equations of motion involve only ϵ, ρ and the fluid velocity

v.

Here, we show how gradient terms can be incorporated into the equations of hydrodynamics.

Often, mean-field theories assume a globally fixed quantity, usually the temperature. In that

case the system adjusts the density to minimize the Helmholtz free energy, F = E − TS. If

the resulting density profile is stable, e.g. at a phase boundary, the chemical potentials should

be constant. Otherwise, the entropy could be increased by moving charge from a region of higher

chemical potential to a region of lower chemical potential. Further, an equilibrated profile must also

have vanishing hydrodynamic acceleration, ∂iTij = 0. This requires adding gradient modifications

to both the chemical potential and stress-energy tensor. The principal goal of this paper is to
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develop a formalism where all the gradient modifications appear in a manner which is consistent

with local entropy conservation. A second consistency check of the formalism is that in a density

profile where the temperature and chemical potentials remain constant, the stress-energy tensor

should also be free of acceleration.

General theoretical derivations are presented in the next section, and a discussion of alternate

formulations is presented in Sec. III. After assuming a form for the entropy density with gradient

modifications, corrections for other quantities are then uniquely determined. We find that all the

dependent quantities, µ, T and Tij , are uniquely altered to maintain the consistencies described

above. In Sec.s IV and V, two static examples are investigated, the phase boundary of the liquid

gas phase transition, and the form for density-density correlations. In each case, the effect of the

gradient terms are illustrated. In Sec. VI, a consistent form for thermal noise in the current-current

correlation function, [45, 48–51], is presented that accounts for the gradient terms.

II. IMPLEMENTING GRADIENT TERMS INTO HYDRODYNAMICS

For hydrodynamics, the natural quantities to describe the system are the energy density ϵ, the

charge density ρ, and the collective velocity v. For our purposes, we consider the Eckart frame,

where the velocity defines the movement of charge, i.e. when v = 0 the charge current vanishes,

and ϵ = T 00 in that frame, while ρ = j0, the component of the four-current in that same frame.

For fixed ϵ and ρ, the natural thermodynamic quantity to consider is the entropy density, which for

a uniform system would have a form s̄(ϵ, ρ). Given that hydrodynamic cells have fixed energy and

charge, the system adjusts toward maximizing entropy. Here, gradient modifications are added to

the expression for the entropy density with the form,

s = s̄ (ϵκ, ρ) , (3)

ϵκ = ϵ+
κ

2
ρ∇2ρ.

Here, all quantities with the bar, e.g. s̄, refer to the value one would have with uniform density.

The form is motivated by considering the potential energy of a particle a position δr relative to its
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neighbors. The contribution from an attractive potential, v(r − r′), with other charges is

V =
1

2

∫
d3rd3r′ ρ(r)v(r − r′)ρ(r′) (4)

=
1

2

∫
d3r ρ(r)

∫
d3δr v(δr)

[
ρ(r) +

(δr)2

6
∇2ρ|r=0

]
,

∆V = −1

2

∫
d3r κρ∇2ρ,

κ = −1

6

∫
d3r r2v(r). (5)

Here, ∆V is the change in energy due to the fact that neighbors are not at a uniform density.

These assumptions ignore correlations between the particles, which would suggest a density or

temperature dependence for κ. Adding potential energy to a neighborhood of particles should not

strongly affect the entropy, so the entropy should mainly be a function of the energy one would

have without this correction, ϵκ = ϵ+ κρ∇2ρ/2, hence the form for Eq. (3).

A more general form for Eq. (3) would allow κ to depend on ϵ and ρ, but for the sake of simplicity,

those dependencies are neglected here given the phenomenological nature of this treatment where

κ will be treated as an adjustable parameter. We also neglect the possibility of additional terms

such as

ϵκ = ϵ+
1

2
κρρρ∇2ρ+

1

2
κϵϵϵ∇2ϵ+

1

2
κϵρ(ϵ∇2ρ+ ρ∇2ϵ). (6)

For example, for a quark-gluon plasma with zero net charge one could envision an attractive

interaction between induced color dipoles. If such effects were strong, they might help create the

conditions for a first-order phase transition and there would be a surface energy at the interface

[3, 4]. There is no such transition, thus such effects are probably small and we consider only the

simple form of Eq. (3) for the remainder of this paper.

One can quickly calculate corrections to the temperature and chemical potential from Eq. (3)

by considering changes to the total entropy due to changes in the energy density and charge density.

First, we consider the conditions for the entropy S being maximized relative to small corrections

in δϵ.

S =

∫
d3r s̄(ϵ+ κρ∇2ρ/2, ρ), (7)

δS =

∫
d3r βδϵ,

β =
∂s̄

∂ϵ

∣∣∣∣
ϵ=ϵκ

= β̄(ϵκ, ρ).

Here, β = 1/T is the inverse temperature. This differs from the inverse temperature calculated

for a uniform system, β̄(ϵ, ρ). Similarly, one can find the alterations to the chemical potential by
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considering small changes in charge density,

δS =

∫
d3r

[
β̄(ϵκ, ρ)κ(δρ)∇2ρ/2 + β̄(ϵκ, ρ)κρ∇2(δρ)/2 + ᾱ(ϵκ, ρ)(δρ)

]
. (8)

Here, α is related to the chemical potential by the relation α = −βµ. The function ᾱ(ϵκ, ρ) repre-

sents the chemical potential for the case of uniform charge and energy density. After integrating

by parts, one finds the chemical potential,

δS =

∫
d3r δρ

[
β̄(ϵκ, ρ)κ

2
∇2ρ+

κ

2
∇2(β̄(ϵκ, ρ)ρ) + ᾱ(ϵκ, ρ)

]
, (9)

α = ᾱ+
β̄κ

2
∇2ρ+

κ

2
∇2(β̄ρ),

ᾱ(ϵκ, ρ) =
∂s

∂ρ

∣∣∣∣
ϵ=ϵκ

.

In this expression, and in the following derivations, the quantities with bars, e.g. ᾱ and β̄ are

evaluated at ϵκ and ρ, unless explicitly shown to be evaluated at ϵ.

The next, and more difficult, goal is to discern how the gradient terms affect the stress-energy

tensor. To do this we consider the change in entropy density during an expansion, i.e. in the

presence of a velocity gradient. In that case, entropy conservation gives

Dts = −s∇ · v, (10)

where here it is implied that the entropy current vanishes at v = 0 and is sv for small v. Here,

Dt = ∂t + v ·∇ is the co-moving derivative, i.e. it is ∂t when in the frame where v = 0.

Following through with the calculation for entropy conservation,

Dts = β̄
[
Dtϵ+Dt

(κ
2
ρ∇2ρ

)]
+ ᾱDtρ. (11)

Next, we apply conservation of energy and charge,

Dtρ = −ρ∇ · v, (12)

Dtϵ = −ϵ∇ · v − Tij∂ivj − ∂iMi,

where M is the momentum density, and represents the components of the stress-energy tensor

Mi = T 0i. Equations (10) and (12) are based on the physical picture where the charge density and

entropy density move together, whereas the energy might have some additional current M , even

in the frame where v = 0. This is not the case in ideal hydrodynamics, where there is no heat

conduction or charge diffusion. However, here there are terms from non-zero-range interactions.

Because these interactions extend over a non-zero distance between two charges, it is somewhat
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ambiguous to assign the position of this portion of the potential energy. Movement of charge

outside a given small co-moving fluid cell can affect the energy within that cell, and therefore the

energy might move, represent to the cell even though the thermal motion of matter within the cells

is unchanged. Such currents should only exist in the presence of velocity gradients, and should

be proportional to κ. In contrast, the position of charge is well defined, and because the entropy

should not be affected by changes in the potential energy, the entropy current should also vanish in

the frame where the charge current vanishes. Thus, there are no additional terms on the right-hand

sides of the expressions for Dts and Dtρ.

Expanding Eq. (11),

Dts = −β̄Tij∂ivj −
[
ᾱρ+ β̄ϵ

]
∇ · v + β̄Dt

(κ
2
ρ∇2ρ

)
− β̄∇ ·M . (13)

Next, one can commute Dt with ∇2,

[
Dt,∇2

]
= −2(∂ivj)∂j∂i − (∇2vi)∂i, (14)

and find

Dts = −β̄Tij∂ivj −
[
ᾱρ+ β̄ϵ

]
∇ · v − β̄∇ ·M (15)

−β̄κ

{
ρ(∇2ρ)(∇ · v) + ρ(∂i∂jρ)∂ivj + ρ(∂iρ)(∂i∇ · v) + 1

2
ρ(∂iρ)(∇2vi) +

1

2
ρ2(∇2∇ · v)

}
.

Again, β̄ and ᾱ are implicitly evaluated at ϵκ and ρ. The last three terms include higher derivatives

of the velocity. Because our goal is to find Tij and because derivatives of the form β̄∇ · (· · · ) can

be absorbed into the expression for M , we rewrite the last three terms so that they appear as a

combination of total derivatives or only include first-order derivatives of the velocity. For example

the last term can be written as

−1

2
κρ2(∇2∇ · v) = −A∂i

{κ
2
ρ2(∂i∇ · v)

}
− (1−A)∂i

{κ
2
ρ2(∇2vi)

}
(16)

+A(∂i∇ · v)∂i
{κ
2
ρ2
}
+ (1−A)(∇2vi)∂i

{κ
2
ρ2
}
.

Here, A is an arbitrary constant. The first two terms, which are total derivatives, can be canceled in

the equation for entropy conservation, Eq. (15), by an equivalent term in M . The latter two terms

include second-order derivatives in the velocity rather than third order. Similar manipulations

can then reduce these terms with second-order derivatives of the velocity to terms with first-order
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derivatives, along with other total derivatives. This yields

T̄Dts = −Tij∂ivj − (µ̄ρ+ ϵ)∇ · v (17)

+
κ

2
∂i
[
ρ∂jρ− (1−A)(∂j(ρ

2))
]
∂ivj +B(∂i(ρ∂iρ))∇ · v − κ

2
AC(∇2(ρ2))∇ · v

+(1−B)κ(∂i(ρ∂jρ))∂jvi −A(1− C)
κ

2
(∂i∂j(ρ

2))∂jvi

−κρ(∇2ρ)∇ · v − κρ(∂i∂jρ)∂ivj .

Terms of form of total derivatives, ∇(· · · ), were eliminated by defining the momentum density as

Mi = −A
κ

2
ρ2∂i∇ · v − (1−A)

κ

2
ρ2∇2vi (18)

−κ

2
ρ(∂jρ)∂ivj + (1−A)

κ

2
(∂j(ρ

2))∂ivj −Bκρ(∂iρ)∇ · v +AC
κ

2
(∂i(ρ

2))∇ · v

−(1−B)ρ(∂jρ)∂ivj −A(1− C)
κ

2
(∂j(ρ

2))∂jvi

Here, A, B and C are all arbitrary constants. Only terms with first-order derivatives in the velocity

remain in Eq. (17), so Tij can be determined by inspection.

The additional momentum density M refers only to that part of that momentum density that

exists in the frame v = 0. Further, M has no terms proportional to v. Those terms are generated

by boosting the entire stress-energy tensor, which generates a contribution ϵδvi + Tijδvj . If there

were terms in M linear in δv, they would violate the expected behavior of the stress-energy tensor

under boosts. Another class of transformations that leaves the relative density profile, and thus

the gradient modification to the energy density unchanged, is rotation, δv = r × δω. Rotations

should also not generate momentum density from the gradient term, aside from contribution from

rotating the stress-energy tensor. To satisfy this constraint the expression for M must avoid terms

that depend on ωi = ϵijk∂jvk. Thus, all velocity gradients must appear either as the symmetric

combination, ∂ivj + ∂jvi, or as ∇ · v. This requires

A = 1, B =
1

2
, C = 1. (19)

The momentum density is then

Mi = −κ

2
ρ(∂jρ)(∂ivj + ∂jvi)−

κ

2
ρ2∂i∇ · v +

κ

2
ρ(∂iρ)∇ · v. (20)

For an expanding or contracting system, i.e. one with velocity gradients, the potential energy of a

constituent charge changes due to the changing relative positions of its neighbors. Energy moves

from cell to cell, but the net energy is unchanged.
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The equation for entropy conservation, Eq. (10), then becomes

−β̄Tij∂ivj − ᾱρ∇ · v − β̄ϵ∇ · v (21)

+
κβ̄

2
(∂i(ρ∂jρ))(∂ivj + ∂jvi) +

κβ̄

2
(∂i(ρ∂iρ))∇ · v − κβ̄

2
(∇2(ρ2))∇ · v

−β̄κρ(∇2ρ)∇ · v − β̄κρ(∂i∂jρ)∂ivj

= −s∇ · v

Using the fact that s = s̄ and s̄− ᾱρ− β̄ϵκ = P̄ , where P̄ is also evaluated at ϵκ, one finds

β̄Tij∂ivj = β̄P̄∇ · v − β̄κ

2
ρ(∇2ρ)∇ · v +

κβ̄

2
(∂i(ρ∂jρ))(∂ivj + ∂jvi) (22)

+
κβ̄

2
(∂i(ρ∂iρ))∇ · v − κβ̄

2
(∇2(ρ2))∇ · v − β̄κρ(∂i∂jρ)∂ivj ,

Tij = δij

{
P̄ − κ

2
ρ∇2ρ+

κ

2
(∂i(ρ∂iρ))−

κ

2
(∇2(ρ2))

}
+
κ

2
∂i (ρ∂jρ) +

κ

2
∂j (ρ∂iρ)− κρ(∂i∂jρ)

= P̄ δij − κ

[
ρ∇2ρ+

1

2
(∇ρ)2

]
δij + κ(∂iρ)∂jρ.

Thus, Tij is not purely proportional to δij , and one cannot express the change to the stress-energy

tensor by only altering the pressure.

In Sec. IV we consider the example of a surface profile between two phases at equilibrium. For

entropy to be maximized both β and α must be uniform. Also, if entropy is maximized there should

be no hydrodynamic acceleration. Thus, if the temperature is uniform and if v = 0, ∂iTij , must

vanish if ∂iµ = 0. Otherwise, charge or energy could be moved from one point to another while

increasing entropy. Using the expression for the stress-energy tensor in Eq. (22), at equilibrium

∂iT
(equil)
ij = 0 (23)

= ∂jP̄ − κρ∂j∇2ρ.

For uniform temperature, the pressure gradient can be related to the chemical potential gradient

∂iP̄ =
∂P̄

∂µ̄
∂iµ̄ = ρ∂iµ̄, (24)

and from Eq.s (9) and (23),

∂iT
(equil)
ij = ρ∂j

(
µ̄− κρ∇2ρ

)
= ρ∂jµ. (25)

Thus, if a profile has a uniform chemical potential and temperature, even if the density is non-

uniform, hydrodynamic acceleration vanishes. Because uniform µ and T should be sufficient to
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maximize entropy, the system should also be free of acceleration and Eq. (25) represents a test of

the consistency of the formalism.

Finally, the gradient terms also affect the expressions for diffusion, or equivalently, the conduc-

tivity. Diffusion is essential to include if a treatment is to reproduce equilibrium quantities, e.g. for

a phase boundary. At equilibrium, one must satisfy the relations ∂iTij = 0, ∂iβ = 0 and ∂iµ = 0.

Hydrodynamically, a system can expand (with damping) until the acceleration disappears, but

this would not necessarily lead to a uniform temperature and chemical potential, because hydro-

dynamic equations would maintain a uniform entropy to baryon ratio. In contrast, the entropy

per baryon varies significantly across a phase boundary. By allowing charge to diffuse between

neighboring hydrodynamic cells, the system can equilibrate and eliminate gradients of all three

quantities. Thus, if a model is designed to study dynamics related to either reaching equilibrium,

or moving toward equilibrium, both hydrodynamic motion and diffusion should be included, and

in a manner consistent with thermodynamics.

Compared to the frame where the entropy current is fixed, diffusion moves the charge density

via Fick’s law.

J (D) = σT∇α = −σT∇(µ/T ). (26)

Here, aside from powers of the charge, σ is the conductivity. This can be related to the diffusion

constant,

∇ρ =
∂ρ

∂ᾱ
∇ᾱ (27)

= −χ∇ᾱ,

where χ is the susceptiblity, or charge fluctuation,

χ = T
∂ρ

∂µ

∣∣∣∣
T

=
1

V

⟨
(Q− ⟨Q⟩)2

⟩
. (28)

The diffusion constant D is then related to the conductivity through the relation

j = −D∇ρ, (29)

D =
σT

χ
.

From the gradient modification to the chemical potential, Eq. (9),

J⃗ (D) = σT∇
(
ᾱ+

β̄κ

2
∇2ρ+

κ

2
∇2(β̄ρ)

)
(30)

= −σT

χ
∇ρ+

σκT

2
∇
[
β̄∇2ρ+∇2(β̄ρ)

]
= −D∇ρ+

κχD

2
∇
[
β̄∇2ρ+∇2(β̄ρ)

]
.
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Thus, there are higher-order gradient modifications to Fick’s law.

Summarizing the results of this section, gradient terms affect every thermodynamic quantity,

s = s̄(ϵκ, ρ), (31)

β = β̄(ϵκ, ρ),

α = ᾱ(ϵκ, ρ) +
β̄κ

2
∇2ρ+

κ

2
∇2(β̄ρ),

Mi = −κ

2
ρ(∂jρ)(∂ivj + ∂jvi)−

κ

2
ρ2∂i∇ · v +

κ

2
ρ(∂iρ)∇ · v.,

Tij = P̄ δij − κ

[
ρ∇2ρ+

1

2
(∇ρ)2

]
δij + κ(∂iρ)(∂jρ),

J (D) = −D∇ρ+
κχD

2
∇
[
β̄∇2ρ+∇2(β̄ρ)

]
.

Each of the quantities with bars are those for uniform energy and charge density, but are evaluated

at an energy density ϵκ = ϵ + κρ∇2ρ/2, and at a charge density ρ. Once the entropy density is

defined in the first line of Eq. (31), all the other relations are uniquely determined.

Because the ansatz for the entropy density in the first line of Eq.s (31) has κ being independent

of ϵ and ρ, and because terms involving derivatives of the energy density are ignored, these relations

are far from completely general. However, the form is justifiable in many circumstances, especially

given the phenomenological nature of most studies based on Landau field theory. The forms are

consistent with thermodynamics even in dynamical situations where the temperature, stress-energy

tensor and chemical potentials vary with both position and time.

III. ALTERNATE FORMS

The equations from the previous section, summarized in Eq. (31), all derived from Eq. (3).

If this original ansatz is changed, then the resulting equations also change. For example, in the

studies [8–11], a choice is made for the pressure, P = P̄ + κρ∇2ρ, which gives a diagonal form

to the stress-energy tensor in the fluid frame, and is much simpler than what is seen in Eq. (31).

However, it is difficult to reconcile this form with the form for the chemical potential for a system

at uniform temperature, µ = µ̄ − κ∇2ρ. Even at uniform temperature, this form fails to provide

the consistency demonstrated in Eq. (25). To understand these difficulties, one can consider a

phase boundary at equilibrium, or for that matter fluctuations at equilibrium. The temperature

and chemical potentials must be constant across the profile. Otherwise, charge or energy could be

transferred in such a way as to increase the net entropy. The system must also be simultaneously

stable to hydrodynamic acceleration, ∂iTij = 0. The gradient modifications to the stress-energy
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tensor at uniform temperature might have a general form,

Tij = P̄ δij +Aδijρ∇2ρ+Bδij(∇ρ)2 + C(∂iρ)∂jρ+Dρ∂i∂jρ. (32)

Given that ∇P̄ = (∂P/∂µ)∇µ̄ = ρ∇µ̄, if ∂iTij is to vanish any time that ∂jµ vanishes, one must

have

∂iTij = ρ∂jµ, (33)

∂i
{
Aδijρ∇2ρ+Bδij(∇ρ)2 + C(∂iρ)∂jρ+Dρ∂i∂jρ

}
= −κρ∂j∇2ρ,

ρ(∂j∇2ρ)(A+ C) + (∂iρ)(∂i∂jρ)(2B + C +D) + (∂jρ)(∇2ρ)(A+D) = −κρ(∂j∇2ρ).

This determines three of the four parameters. In terms of C,

A = −κ− C, B = −κ+ 2C

2
, D = κ+ C. (34)

This constraint was indeed satisfied by the relations in Eq. (31). In that derivation C was zero

in order to enforce proper behavior of the entropy current under rotation. From this exercise,

it is clear that the stress-energy tensor needs to have off-diagonal terms, because both C and D

cannot be set to zero. This suggests that it would be problematic to build a consistent set of

gradient modifications to all thermodynamic quantities if one wishes to use a simple form for the

stress-energy tensor with no gradient modifications to off-diagonal terms.

IV. THE LIQUID-GAS PHASE INTERFACE

Here, we illustrate the effect of gradient modifications by considering the static density profile

between liquid and gas phases at equilibrium, similarly as was done in [2]. We consider the

system to be at a uniform fixed temperature, then solve for the density profile by requiring the

chemical potential to be constant, or equivalently requiring that diffusion vanishes. After finding

the density profile, we compare the stress-energy tensor profile, temperature and chemical potential

to the values one would have ignoring gradient terms, T̄ij = P̄ δij , β̄ and ᾱ, evaluated at the energy

density ϵ instead of ϵκ.

We assume the Van der Waals equation of state,

P̄ =
ρT̄ (ϵκ, ρ)

1− ρ/ρs
− aρ2. (35)

The critical temperature for this equation of state is Tc = (8/27)aρs. As stated before, P̄ and T̄ are

the pressure and temperature for a uniform system. At equilibrium, T̄ can be treated as a constant.
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The chemical potential, µ = µ̄−κρ∇2ρ/2, is then also constant. For the fixed temperature, T̄ , one

can solve for the liquid and gas coexistence densities by requiring

µ̄(T̄ , ρL) = µ̄(T̄ , ρG), (36)

P̄ (T̄ , ρL) = P̄ (T̄ , ρG),

µ̄ =
∂(P̄ − µ̄ρ)

∂ρ

= −2aρ+
T

1− ρ/ρs
− T ln((ρs/ρ)− 1).

The last relation was derived via the Maxwell relation, ρ∂µ/∂ρ = ∂P/∂ρ. Minimizing the entropy

per surface area, relative to moving particles to the heat bath, gives the condition

TδS/A = 0 (37)

= δ

∫
dx

[
P0 − P + (µ− µ0)ρ+

κ

2
(dρ/dx)2

]
=

∫ ρL

ρG

dρ δ

[
P0 − P + (µ− µ0)ρ+ (κ/2)(dρ/dx)2

dρ/dx

]
, (38)

where the phase interface is parallel to the x axis. Here, P0 = PG = PL and µ0 = µG = µL are the

coexistence values. The density gradient is then

dρ

dx
=
√

2[P0 − P (ρ) + (µ(ρ)− µ0)ρ]/κ. (39)

This expression can be integrated numerically to give x(ρ) and thus determine the density profile.

Figure 1 shows the density profile and local thermodynamic quantities for the case where the

two phases are at a temperature T = 2Tc/3, and for a = 1, κ = 1 and ρs = 1. The temperature,

T = T̄ (ϵκ, ρ) and chemical potential, µ = µ̄(ϵκ, ρ) − κρ∇2ρ/2, indeed turn out to be constant as

expected. With the surface normal being the x direction, Txx = P̄ (ϵκ, ρ) − κρ∇2ρ + κ(∂xρ)
2/2 is

also constant. Even though Tyy varies as a function of x, it does not violate the constraint that

∂iTij = 0 for an equilibrated system.

V. DENSITY-DENSITY CORRELATIONS

Another example of equilibrated density profiles is that for the density-density correlation func-

tion,

Cρρ(r) ≡ ⟨δρ(r = 0)δρ(r)⟩, (40)

δρ(r) ≡ ρ(r)− ⟨ρ(r)⟩.
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FIG. 1. In the upper panel (a), the density profile is displayed for the liquid-gas interface. Including

gradient modifications, the temperature (panel b), chemical potential (panel c) and the stress-energy tensor

element Txx (panel d) are all constant, as is required for an equilibrated system. The quantities evaluated

as a function of the local energy density and local momentum density, T̄ (ϵ, ρ), µ̄(ϵ, ρ) and P̄ (ϵ, ρ) all vary

substantially across the interface. The element Tyy (panel a) also varies, but because it does not depend

on y does not affect the constraint ∂iTij = 0. To make all quantities dimensionless, densities are in units

of ρs, the temperature and chemical potential are in units of aρs and the pressure is in units of aρ2s. The

coordinate x is in units of
√
κ/a.

This integrates to the susecptibility. For a large volume Ω,

∫
d3r Cρρ(r) =

1

Ω

∫
d3rd3r′ Cρρ(r − r′) (41)

=
1

Ω
⟨(Q− ⟨Q⟩)2⟩ = χ.
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An array of correlation functions can be considered,

Cρα(r) = ⟨δρ(r = 0)δα(r)⟩, (42)

Cρβ(r) = ⟨δρ(r = 0)δβ(r)⟩,

Cρ,T ij(r) = ⟨δρ(r = 0)δTij(r)⟩,

Cρᾱ(r) = ⟨δρ(r = 0)δᾱ(ϵ(r), ρ(r))⟩,

Cρβ̄(r) = ⟨δρ(r = 0)δβ̄(ϵ(r), ρ(r))⟩,

CρP̄ (r) = ⟨δρ(r = 0)δP̄ (ϵ(r), ρ(r))⟩.

The latter three correlations involve the chemical potential, temperature and pressure as functions

of the local energy density and charge density without gradient modifications. Unlike the implicit

assumption used Sec. II of the barred quantities being evaluated at ϵκ = ϵ + κ∇2ρ/2, they are

evaluated at ϵ.

For stability as a function of time,

d

dt
Cρρ(r, t) =

⟨(
d

dt
δρ(r = 0, t)

)
δρ(r, t)

⟩
+

⟨
δρ(r, t)

(
d

dt
δρ(r = 0, t)

)⟩
. (43)

Here, it is assumed the system is at constant temperature, and that the density changes only due

to diffusion. From Eq. (30) and current conservation one finds a modified diffusion equation,

d

dt
δρ(r, t) = D∇2δρ− ℓ2D(∇2)2δρ(r, t), (44)

ℓ2 = βκχ,

and the correlation function obeys the relation,

d

dt
Cρρ(r, t) = 2D∇2

[(
1− ℓ2∇2

)
Cρρ(r, t)

]
. (45)

For the correlation to be stable, (d/dt)Cρρ = 0, which requires

(
1− ℓ2∇2

)
Cρρ(r, t) = 0, r ̸= 0. (46)

The last three relations only apply for r ̸= 0 because Eq. (44) should not be applied to δρ within

the correlation unless the two positions, r and r′, are separated sufficiently so that they evolve

separately in the correlation function ⟨δρ(r′)δρ(r)⟩. Encapsulating the short-distance behavior

with a delta function, the correlation function then has a form,

Cρρ(r) = (χ− χ0)
e−r/ℓ

4πℓ2r
+ χ0δ

3(r). (47)



16

This form satisfies the constraint that the correlation integrates to the susceptibility and describes

any short-distance structure to the correlation with a parameter χ0. As κ → 0, when gradient

modifications disappear, both terms become delta functions and all the correlation is short-range.

One example of short-range correlation is a gas, where the only correlation is between a particle

and itself.

From Eq. (31), at constant temperature the chemical potential obeys the relation,

δα = δᾱ+ βκ∇2δρ (48)

=
∂ᾱ

∂ρ
δρ+ βκ∇2δρ

= − 1

χ

(
1− ℓ2∇2

)
δρ = 0,

where the last relation used Eq. (44). This implies that all the correlation functions with δα

vanish for r ̸= 0 because α, like the temperature, does not fluctuate even though the density does

fluctuate. However, the chemical potential, ᾱ(ϵ, ρ), which ignores the gradient modifications, does

fluctuate as does β̄(ϵ, ρ) and P̄ (ϵ, ρ). Assuming small fluctuations (only one power in δρ from Eq.

(31)), the various correlations listed previously can be determined from Cρρ,

Cρα(r) = Cρβ(r) = 0, (49)

δTij =
∂P̄

∂ᾱ

∂ᾱ

∂ρ
δij − βκρ∇2δρδij ,

Cρ,T ij = δij
ρ

χ

[
1− βκχ∇2

]
Cρρ(r) = 0,

Cρᾱ(r) = Cρρ(r)
∂ᾱ

ρ
=

1

χ
Cρρ(r),

Cρβ̄(r) = Cρρ(r)
∂β̄

∂ρ
=

1

χQE
Cρρ(r),

χQE =
1

V
⟨(Q− ⟨Q⟩)(E − ⟨E⟩)⟩ ,

δP̄ =
∂P̄

∂ᾱ

∂ᾱ

∂ρ
δρ =

ρ

βχ
δρ,

CρP̄ =
ρ

βχ
Cρρ(r).

These expressions only consider the lowest order terms in δρ. As was the case for the density profile,

expressions involving gradient-corrected thermodynamic quantities vanish, while those calculated

assuming uniform densities did not.
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VI. GRADIENT TERMS AND NOISY HYDRODYNAMICS

The equations of hydrodynamics do not include any correlation functions. Nonetheless, corre-

lations can be calculated within those equations by adding random noise terms to the equations

[41, 45, 48, 50, 51]. The noise generates event-by-event fluctuations, where each event involves an

independent hydrodynamic calculation. One can add a noise term, j(n), to the current in such a

way that for a static system noise generates correlations consistent with the the charge susceptibil-

ity χ. In the standard method, the generated correlation is short-range, at a scale set by the noise

in the correlation. Here, we show how a local noise term, combined with the gradient modifications

presented here, can lead to correlations with the length scale ℓ =
√
βκχ, see Eq. (44). This length

scale diverges at the critical point in mean field theory. The modifications to the noise term derived

here not only reproduces the desired mean field correlations, but does not require fine-tuning the

strength of the noise at Tc. Rather, the divergences appear due to χ diverging, which is a function

of the equation of state, rather than from adjusting the noise terms.

One can define a correlation function and solve for its time dependence,

C(r) = ⟨ρ(0)ρ(r)⟩, (50)

∂tC(r) = 2D∇2C(r)− 2σκ(∇2)2C(r) + [∂tC](n),

where the last term comes from adding the ∇ · j(n) term to expression for ∂tρ. The ∇ terms refer

to derivatives with respect to the relative coordinate r. Motivated by the Kubo relation for the

conductivity [45, 48, 51],

⟨j(n)i (0)j
(n)
k (r)⟩ = 2σTδikδ

4(r) + 2B∂i∂kδ
4(r). (51)

This last term does not appear in standard noise treatments. It integrates to zero, and is being

multiplied by a currently unconstrained parameter B.

The time evolution of the noise term above then becomes

[∂tC](n)(r) =
1

∆t

∫ 0

−∆t
dt1dt2 ⟨∇1 · j(n)(r1)∇2 · j(n)(r2)⟩ (52)

= −2σT∇2δ3(r) + 2B∇2∇2δ3(r).

Next, we look for solutions for the steady-state case of the form,

C(r) = χ0δ
3(r) + (χ− χ0)

e−r/ℓ

4πℓ2r
. (53)
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This ensures that the correlation integrates to the susceptibility, and χ0 is the strength of the

short-range correlation. Using the fact that(
∇2 − 1

ℓ2

)(
e−r/ℓ

r

)
= −4πδ3(r), (54)

one can plug everything into Eq. (50), using the facts that σ = βDχ and ℓ2 = βκχ, to obtain

∂tC(r) = 0 (55)

= −2 (σκχ0 −B) (∇2)2δ3(r).

These determines the parameter B,

B = σκχ0. (56)

Thus, the noise as described in Eq. (51) is perfectly smooth near the phase transition if χ0 is

smooth. The susceptibility χ diverges near Tc, which causes ℓ2 = βκχ to diverge and forces the

diffusion constant, D = σT/χ, to vanish. The correlation function from Eq. (53) becomes

C(r) = C(r) = χ0δ
3(r) +

(χ− χ0)T

κχ

e−r/ℓ

4π
. (57)

Thus, as one approaches the critical point the magnitude of the correlation approaches a constant,

Tc/(4πκ), and the correlation length diverges. The correlation length is also proportional to κ,

which from the introduction is proportional to the range of the attractive interaction. If κ is small,

all the correlation is short-range.

One can separate out the part of the correlation that is not short-range.

C ′(r) ≡ C(r)− χ0δ
3(r), (58)

i.e. it is not the part of the correlation of a particle with itself, or some additional very-short range

correlation. Plugging this into Eq.s (50) and (52),

∂tC
′(r, t)− 2D∇2C ′(r, t) + 2σβκ(∇2)2C ′(r, t) = −2D(χ− χ0)∇2δ3(r)− δ3(r)∂tχ0(t) (59)

∂tC
′(r, t)− 2D∇2(1− ℓ2∇2)C ′(r, t) = −2D(χ− χ0)∇2δ3(r)− δ3(r)∂tχ0(t).

Integrating the correlation,

d

dt

∫
d3r C ′(r, t) = − d

dt
χ0. (60)

This emphasizes that the integrated correlation is constant in time, and the rate of change of the

short-range part of the susceptibility serves as a source term for a modified diffusion equation

for C ′(r, t), similar as in [45], but with gradient terms modifying the diffusion equation. If the

evolution is pursued indefinitely, the part of the correlation that cancels the equilibrium portion

will spread over an infinitely large volume.
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VII. SUMMARY AND OUTLOOK

Gradient terms have commonly appeared in dynamical theories of heavy-ion collisions, both in

microscopic pictures where the mean field is altered, and even in hydrodynamic treatments where

the pressure is altered. Here, a framework is presented providing consistent gradient terms for the

stress-energy tensor, temperature, chemical potential, entropy density, and entropy current for a

hydrodynamic treatment. This also determines how diffusion should be altered by gradient terms.

The gradient terms in Eq.s (31) are determined by one additional parameter κ, which accounts for

the non-zero range attractive interaction between charged particles. These relations all resulted

from the assumption of the form for the entropy density in Eq. (3).

Here, a single kind of charge has been considered, whereas in a serious model of heavy-ion

collisions one would expand the definition of charge density to include baryon, strangeness and

isospin, or equivalently up, down and strange charge. It would not be difficult to expand the

relations to include multiple charges. It would be more difficult to expand the expressions if the

gradient terms were to include gradients of the energy density or if κ were no longer a constant.

For these more complicated considerations one would still begin with the assumption of a form for

the entropy density as suggested in Eq. (6). For example, at zero baryon density one might expect

a dipole-dipole attractive interaction in the quark-gluon plasma with a non-zero range between

regions of higher energy density. This would motivate a term κϵϵϵ∇2ϵ/2. However, such terms are

not likely to be as strong as the term involving only the charge, because those interactions involve

charges directly rather than induced dipole moments. Surely, the parameter κρρ considered here

could have some dependence of energy or charge density. If such terms were deemed important,

the general approach applied here could be expanded.

The treatment of correlations from Sec.s V and VI is based on the same assumption used to

describe critical phenomena in Landau mean field theory. Hence, its validity near the critical point

is questionable given that a three-dimensional system does not satisfy the Ginzburg criteria [1].

If one is sufficiently close to the critical point, fluctuations of ⟨(δρ)3⟩ or ⟨(δρ)4⟩ overwhelm the

corrections of ⟨(δρ)2⟩ considered here. However, this failure is only in the immediate region of the

critical point, and even then does not qualitatively affect the behavior. More importantly, once

inside the coexistence region, the seeding of fluctuations remains an open question, as the length

scale of thermal noise, as in Sec. VI, may play a role. Currently, theory cannot rule out the

possibility there is no phase transition, i.e. no coexistence region or critical point. If that is the

case, but if susceptibility is large, significant non-zero-range correlations could develop and should
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be reasonably addressed with approaches similar to what is shown here.

The formalism here suffers from serious issues regarding causality. The stress-energy tensor

has contributions proportional to ∇2δρ, which clearly leads to the frequency of sound waves, ω,

obeying dispersion relations at high wave number k, with ω2 ∼ k4, which at some point becomes

super-luminal. This would be important for systems with small-scale density inhomogeneities

characterized by high wave numbers. Israel-Stewart hydrodynamics successfully addresses similar

issues that occur when adding viscosity to ideal hydrodynamics [52, 53]. Similar ideas might prove

successful for non-zero-range corrections. Another place where causality plays a role is with the

treatment of diffusion, Eq. (44). Even without gradient modifications, the diffusion equation is

parabolic, ω ∼ k2, and gives acausal behaviors at short times where the spread from a point source

extends a distance,
√
2Dt, which is greater than ct for short times. A number of approaches have

addressed this issue [42, 43, 48, 54–56]. In Eq. (44), ω ∼ k4 for large k, which suggests even

more unphysical behavior for short times. Similar tactics should be developed to limit the diffusive

spread at small times.

Despite the issues listed above, the formalism developed here should prove useful. In a dynamic

environment, such as a heavy-ion collision, density correlations develop and grow both hydrody-

namically and diffusively, and both forms of growth are necessary for a system to equilibrate.

This formalism allows the simultaneous and consistent treatment of both. In future work, the

author plans to apply these techniques to study the growth of fluctuations, and discern whether

the features of the phase diagram near the critical point might manifest themselves in final-state

measurements. Given the rapid nature of the expansion of the fireball in heavy-ion collisions, it

is not clear that sufficient time exists for the development of correlations that can be detected

experimentally. Thus, it is critical to develop dynamic models for the growth of fluctuations.
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