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Here we worry  
about this interface 
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How to make particles from densities

Typically done by use of the Cooper-Frye equation
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Just calculating the integral will conserve all relevant quantum
numbers but lead to non-integer particle numbers.

To do resonance decays, final state rescattering and compare with
data on an event-by-event basis one usually does a Monte-Carlo
sampling of this equation.

One may even conserve some or all conserved quantities.

Important

Since the volume elements (cells) are usually small �x < 1fm, the
particle number in a cell is also N

p

<< 1 and so one assumes it is Poisson
distributed!
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If all we need is the final state momentum distribution we are done!

However, then we miss: 
• Re-scattering, resonance dynamics 
• any other (mean field dynamics of the hadronic phase) 
• etc…

Thus we need an interface between hydro and transport: Particleization
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B1 B2 B3 Bm….

Lets stay in co-ordinate space for the time being 

Hyper-surface made out of m cells

Bi = Baryon number in cell “i”  (ignore anti-baryon for the moment)

Fluctuating Hydro: Ensemble of hydro state {B1,B2,…Bm} which  
carry information of the correlations and fluctuations. 

Thus fluctuating hydro provides a probability distribution for the Bi

P (B1, B2, . . . , Bm)
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B1 B2 B3 Bm….

We consider a subset:  i= 1,2,…,n<m 
And study the various cumulants, for example the (scaled) variance 

m�

i=1

Bi = Btot = constBaryon number conservation:

For simplicity, look at just one cell: 

Fluctuating Hydro provides  
values for all cumulants! 

K1 =
�

B

B Phydro(B) = �B�
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Phydro(B) �
�
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P (B1, B2, . . . , Bm)
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B1 B2 B3 Bm….
For transport we need “particles”:  
Common practice: Sample a Poisson (multinomial) distribution: 

Again for one cell and a given value of B:

P (BCF , B) = PPoisson(BCF ; B)

P (BCF ) =
�

B

Phydro(B)PPoisson(BCF ; B)

Folding with the results from hydro we get



Cumulants
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K1,CF = �B� = K1,hydro

K2,CF = K2,hydro + K1,hydro

There are extra contribution due to the Freeze out prescription

Same is true if global baryon number is concerned  
by using multinomial instead of Poisson

Question: 
Are these extra contributions real or spurious
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total baryon number is conserved in the hydrodynamics
evolution. In the following we will discuss how the var-
ious freeze-out schemes will map these fluctuation into
the initial state of a transports evolution.
As already discussed, typically the Cooper-Frye freeze-

out is carried out by sampling a thermal (grand-
canonical) distribution in the cells on the freeze-out sur-
face. To start the discussion let us consider the freeze-
out procedure in one given cell. Here we will ignore
anti-particles which at low collision energies is a good
approximation. Given an ensemble of hydrodynamic
events, which are generated for example by taking ther-
mal and initial state fluctuations, we can define a prob-
ability P (B) to have a given baryon number B in the
cell. Then the variance of the baryon number in the cell
is given by

σ2 =
〈

(δB)2
〉

=
〈

B2
〉

− ⟨B⟩2

=
∑

B

P (B)B2 − (
∑

B

P (B)B)2 (4)

Now for each run or member of the hydro ensemble we
freeze-out by sampling particles according to a Poisson
distribution. To keep things general from the start, let us
further assume we represent a real baryon with NT test-
particles, so that the baryon number of each test-particle
is QB = 1/NT . Typical freeze-out procedures would cor-
respond to NT = 1, i.e. each baryon is represented by
one (test)-particle. The mean and the second moment of
the baryon number after C-F freeze-out are then given
by

⟨B⟩CF = QB

∑

B
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N
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CF
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Pp(N ;B/Q)N2 (5)

where, Pp(N,B/Q) = e−B/QB
(B/QB)N

N ! is a Poisson dis-
tribution with mean ⟨N⟩ = B/QB. Here ⟨· · ·⟩CF denotes
averages after the Cooper-Frye freeze-out. Therefore,

⟨B⟩CF = QB
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+QB ⟨B⟩ (6)

Obviously, in the second equation
〈

B2
〉

CF
̸=
〈

B2
〉

and
we obtain an additional contribution to the variance of
the baryon number after Cooper-Frye freeze-out, which
involves the mean number of baryons in the cell.

σ2
CF =

〈

B2
〉

CF
− ⟨B⟩2CF = σ2 +QB ⟨B⟩ . (7)

The additional contribution, QB ⟨B⟩ scales with 1/NT

and is thus suppressed for large numbers of test-particles.
On the other hand, in case of NT = 1, i.e. if each

baryon is represented by one test-particle, the extra term

may give rise to large extra contribution to the cumu-
lants. For example, if the baryon number of a given fluid
cell was already distributed according to a Poisson dis-
tribution, we would have

σ2
CF = (1 +QB) ⟨B⟩ = (1 +QB)σ

2 (8)

so that in case of NT = 1 the scaled variance after
Cooper-Frye freeze-out would be twice as large than that
of the hydro-ensemble. The above observation can be
easily extended to many freeze-out cells and higher cu-
mulants and here we only quote the results for cumulants
up to fourth order. The details can be found in the Ap-
pendix.
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Here KB,CF
n denote the cumulants obtained after

Cooper-Frye freeze-out into NT = 1/QB test-particles,
and KB

n denote the true cumulants reflecting the (fluc-
tuating) hydro-ensemble. Therefore, after Cooper-Frye
freeze-out, the the n-th cumulant receives contribution
not only from the true n-th order cumulant of the baryon
density distribution but from all cumulants of order
m < n. These extra contributions are suppressed by the
number of test-particles, NT = 1/QB. Therefore, repre-
senting a baryon by only one particle at the freeze-out,
as it is done commonly when matching various hadronic
cascade codes to hydrodynamics, may potentially result
in incorrect distribution of the baryon number. We note,
however, that in a case where no fluctuations are present
in the fluid dynamical fields, i.e. when a constant fluid
dynamical background is considered, all fluid dynamical
cumulants vanish KB

i = 0, and one is left with purely
Poissonian cumulants KB,CF

i = ⟨B⟩. This may actually
be a desired result expected for random particle num-
ber fluctuations. If, on the other hand, one deals with
fluctuating fluid dynamics, all or parts of the Poissonian
fluctuations are already contained in the hydro ensemble
and one is likely to over count the amount of fluctuations
by doing a standard C-F freeze-out.
The above freeze-out based on Poisson sampling does
not conserve the total baryon number in a given event.
Only in the limit of a large number of test-particles is
the baryon number effectively conserved. This situation
can be improved by sampling the baryon number (test-
particles) from each cell according to a multinomial dis-
tribution

P (N1, . . . ,MM ) =

(Btot/QB)!

N1! . . .NM !
pN1

1 . . . pNM

M δ∑M

i=1
Ni,Btot/QB

(10)

Here Btot is the (conserved) baryon number of the entire
system,M is the total number of cell of the hyper-surface,
pi = Bi/Btot with

∑M
i pi = 1, and Bi the baryon number

Extra contribution can be suppressed by using test particles: 

Each real particle is represented by NT test particles: 
Define QB=1/NT which is the baryon number of e.g. a test-proton

Alternative: Canonical sampling.  
• Requires integer baryon number in cells 
• Otherwise also test particles
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FIG. 2. [Color online] Variance over the mean of the net-
baryon number in a given spatial volume restricted by a max-
imum z-coordinate value z. The hydro result is obtained at
a time t=3 fm/c for collisions of Pb+Pb at a beam energy
of Elab = 3.5 A GeV and fixing the number of participants
to Npart = 397. The red line with square symbols depicts
results for the pure hydro simulation before particle produc-
tion. The black lines with small symbols are the results after
particle production via the Cooper-Frye sampling (C-F) with
a given number of test-particles per real particle QB = 1/NT .
The green lines are the expected results for a multinomial
distribution (eq.(11)) based on the pure hydro cumulants.

variance due to the contribution from the freeze-out pro-
cedure, as shown in Eq. (11). Indeed, if we use equation
(11) to add the contribution ∼ QB to the variance and
set QB = 1, we obtain the solid green line which agrees
very well with the result from the numerical sampling.
The same is true also for the Skewness, shown in Fig. 3.
If we carry out the C-F freeze-out using test-particles,

i.e. QB < 1, the resulting scaled variance and skewness
quickly approach the true hydro result. The results of
the C-F sampling using an increasing number of test-
particles is shown as black dashed lines with symbols in
Figs. 2 and 3. The corresponding results using Eq. (11)
for QB < 1 are show as the green dashed lines. Again
for the scaled variance we find a very good agreement
of the C-F test particle sampling and the multinomial
cumulants, Eq. (11). For the skewness we have plotted
only results up to z = 3 since for higher values of z
already the pure hydro results (red line) is not stable
within the statistics of our calculations.

IV. DISCUSSION

We have shown that the finite particle sampling leads
to additional contributions to the local fluctuations of
particle numbers, contributions which are not present
in the fluid dynamical simulation. Using test-particles
these additional contribution can be suppressed. How-

FIG. 3. [Color online] Same as in figure 2 but for the Skew-
ness.

ever, there are various subtleties which one needs to take
into account:

1. We would like to stress that we do not claim that
the extra contributions arising from C-F sampling
are a priory wrong in every situation. For exam-
ple, in case of a standard (non-fluctuating) fluid
dynamical simulation it is probably reasonable to
assume that the particle number fluctuates locally
according to a Poissonian (or multinomial for a
globally conserved charge) distribution. Therefore
the Cooper-Frye sampling would correctly repro-
duce the local thermal fluctuations. This is also
true if the ’clumps’ of baryonic matter, produced by
e.g. the spinodal decomposition, are of macroscopic
size i.e. contain a very large number of particles. In
this case the cumulants are then dominated by the
fluctuations of these clumps, as one can easily see
from Eq.(11) and the extra contribution from the
C-F sampling are subleading. Or in other words,
as long as the variations of the baryon number in
the fluid are ”long range” the addition of local, in-
dependent fluctuations from the freeze-out is most
likely reasonable and in any case a subleading con-
tribution.
The situation gets more tricky if one deals with
initial state fluctuations and their possible en-
hancement due to spinodal instabilities in nuclear
collisions. Here the clumps contain only a few
baryons and thus do not dominate the cumulants
and the contribution from the C-F sampling are
non-negligible. Therefore, it is not clear if one can
treat the clumps of baryonic matter as sufficiently
large to consider them macroscopic fluctuations, so
that the addition of local fluctuations would be jus-
tified.

2. The situation changes if one is dealing with fluc-
tuations which are correlated over long distances,
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• Computationally more intensive 
• Lose correlations from resonance decay 
• Will have to include these (and potentially other correlations) 

by propagating two particle distributions  
- Not done yet to my knowledge
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Discussion
• For smooth, non-fluctuation hydro CF sampling is probably 

ok to simulate thermal noise 
• Fluctuating initial conditions: Probably OK as well, not sure 

tough. 
- For lumps with large baryon number, CF “corrections” are sub 

leading anyway (N vs N2) 
• IF fluctuation hydro implies that thermal noise is 

“propagated” then CF sampling means double counting 
- Requires either testparticles, or coarse graining such that 

baryon number is integer in cell so that one can do 
canonical sampling 

• CF sampling affects only “local” or delta-function piece of 
correlation functions.
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Bottom Line
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What is fluctuating hydro really?


