

Hydrodynamic Simulations for the RHIC-BES, Progress, and Challenges

Chun Shen Brookhaven National Lab

Aug. 5, 2017, Stony Brook Unversity

The BEST Collaboration Meeting

Exploring the phases of QCD

Exploring the phases of QCD

- Event-by-event fluctuating initial conditions
- (3+1)-d dissipative hydrodynamic modelling of the QGP
- Microscopic description for hadronic phase

Exploring the phases of QCD

 Event-by-event fluctuating initial conditions

Glauber-LEXUS

 (3+1)-d dissipative hydrodynamic modelling of the QGP

MUSIC

 Microscopic description for hadronic phase

UrQMD/JAM

When to start hydrodynamics?

Go beyond the Bjorken approximation

• The finite widths of the colliding nuclei are taken into account

Go beyond the Bjorken approximation

• The finite widths of the colliding nuclei are taken into account

The interaction zone is not point like

 $y \neq \eta_s$

C. Shen, B. Schenke, in preparation

 Collision time and 3D spatial position are determined for every binary collision

C. Shen, B. Schenke, in preparation

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

C. Shen, B. Schenke, in preparation

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041 [hep-ph]

• These strings are decelerated with a constant string tension $\sigma = 1 \, GeV/fm$ before thermalized to medium

C. Shen, B. Schenke, in preparation

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041 [hep-ph]

• These strings are decelerated with a constant string tension $\sigma = 1 \, GeV/fm$ before thermalized to medium

C. Shen, B. Schenke, in preparation

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041 [hep-ph]

• These strings are decelerated with a constant string tension $\sigma = 1 \, GeV/fm$ before thermalized to medium

t (fm)

C. Shen, B. Schenke, in preparation

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041 [hep-ph]

• These strings are decelerated with a constant string tension $\sigma = 1 \, GeV/fm$ before thermalized to medium

Chun Shen

BEST Collaboration Meeting

Introducing longitudinal fluctuations

• Sample valence quarks from the incoming participants $y_q = \operatorname{arcsinh}\left(x_q\sqrt{\frac{s}{4m_q^2}-1}\right)$ $y_q = \log\left(\frac{x\sqrt{s}}{2m_q}\right)$

Introducing longitudinal fluctuations

- Sample valence quarks from the incoming participants $y_q = \operatorname{arcsinh} \left(x_q \sqrt{\frac{s}{4m_q^2} - 1} \right)$ $y_q = \log \left(\frac{x\sqrt{s}}{2m_q} \right)$
- Sample the rapidity loss according to the LEXUS model

Net baryon rapidity distribution

C. Shen, B. Schenke, in preparation

 Different rapidity fluctuation results different net baryon rapidity distribution

Net baryon rapidity distribution

- Different rapidity fluctuation results different net baryon rapidity distribution
- The valence quark + LEXUS model provides a reasonable net baryon rapidity distribution compared to the RHIC BES data

• The size of the $a_{n,m}$ coefficient can quantify the mount of longitudinal fluctuations

C. Shen, B. Schenke, in preparation

 The a₁₁ coefficient for dE/dy decreases at high collision energy because the system becomes more boostinvariant

- The a₁₁ coefficient for dE/dy decreases at high collision energy because the system becomes more boostinvariant
- The a_{11} coefficient for dN_B/dy increases at high collision energy because less net baryon number at mid-rapidity

 The initial eccentricities decorrelate along η direction faster with more longitudinal fluctuation and at lower collision energy

Hydrodynamics with sources

Energy-momentum current and net baryon density are feed into hydrodynamic simulation as source terms

$$\partial_{\mu}T^{\mu\nu} = J^{\nu}_{\text{source}}$$
$$\partial_{\mu}J^{\mu} = \rho_{\text{source}}$$

 $J_{\rm source}^{\nu} = \delta e u^{\nu} + (e+P) \delta u^{\nu}$

where

heats up the system accelerates the flow velocity ρ_{source} dopes baryon charges into the system

 Source terms are smeared with Gaussians in space and time

Hydrodynamical evolution with sources

energy density

Hydrodynamical evolution with sources

net baryon density

Progress in hydrodynamics

(3+1)D vHydro and vaHydro — a comparison

Chun Shen

BEST Collaboration Meeting

Dissipative hydrodynamics

Energy momentum tensor

$$T^{\mu\nu} = e u^{\mu} u^{\nu} - (P + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu} \qquad \Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu} u^{\nu}$$

Conserved currents

$$J^{\mu} = n u^{\mu} + q^{\mu}$$

Equations of motion

$$\begin{array}{l} \partial_{\mu}T^{\mu\nu} = 0 \\ \partial_{\mu}J^{\mu} = 0 \end{array} + P(e,n) \end{array}$$

Dissipative quantities are evolved with 2nd order Israel-Stewart type of equations

At Navier-Stokes limit,

$$\pi^{\mu\nu} \sim 2\eta \nabla^{\langle\mu} u^{\nu\rangle} \quad \Pi \sim -\zeta \partial_{\mu} u^{\mu} \quad q^{\mu} \sim \kappa \nabla^{\mu} \frac{\mu}{T}$$

 $\nabla^{\mu} = \Delta^{\mu\nu} \partial_{\mu}$

EoS at finite μ_B

High temperature:

- Lattice QCD EoS up to $\mathcal{O}(\mu_B^4)$

Low temperature:

• Glued with hadron resonance gas EoS

Transport coefficients

BEST Collaboration Meeting

Transport coefficients

R. Rougemont, R. Critelli, J. Noronha-Hostler, J. Noronha and C. Ratti, Phys. Rev. D 96, 014032 (2017)

The holographic Einstein-Maxwell-Dilation (EMD) model is fit to the lattice results on thermodynamic quantities at $\mu_B = 0$

Predictions are made for thermodynamic variables at finite μ_B and for the temperature and μ_B dependence of various transport coefficients

Effects of net baryon diffusion on particle yields

 More net baryon numbers are transported to mid-rapidity with a larger diffusion constant

Constraints on net baryon diffusion and initial condition

Effects of net baryon diffusion on pid spectra

 Net baryon diffusion results a flatter spectra for anti-proton compared to proton's

	$C_{B} = 0.0$	$C_{B} = 0.4$	$C_{B} = 1.2$
$\langle p_{\perp} angle^{ar{p}} - \langle p_{\perp} angle^{p}$ (GeV)	0.046	0.091	0.158
BEST Collaboration Meeting			

23/26

Stochastic Hydrodynamics

C. Young, J. Kapusta, C. Gale, S. Jeon and B. Schenke, Phys. Rev. C 91, 044901 (2015)

Treat thermal noise as perturbation

Mayank Singh

Stochastic Hydrodynamics

- The scalar product v_n(p_T) increases with thermal fluctuation; Higher order v_n shows stronger sensitivity
- Thermal fluctuation reduces the correlation between different orders of event-plane angles

A more systemic approach is under way

Conclusion

 We develop a dynamical initialization model to study the early time evolution of heavy-ion collisions at the BES energies

full (3+1)-d event-by-event with net baryon current

 We identified a few experiment observables that could constrain the net baryon diffusion

$$dN^{p-\bar{p}}/dy \qquad \langle p_{\perp} \rangle^{\bar{p}} - \langle p_{\perp} \rangle^{p}$$

• *Thermal fluctuation* is coupled to hydrodynamic evolution to study its impact on hadronic observables