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Exploring the phases of QCD

• Microscopic 
description for 
hadronic phase

• (3+1)-d dissipative 
hydrodynamic 
modelling of the 
QGP

• Event-by-event 
fluctuating initial 
conditions

Chun Shen 2/26BEST Collaboration Meeting



Exploring the phases of QCD

• Microscopic 
description for 
hadronic phase

• (3+1)-d dissipative 
hydrodynamic 
modelling of the 
QGP

• Event-by-event 
fluctuating initial 
conditions

MUSIC

UrQMD/JAM

Glauber-LEXUS

2/26Chun Shen BEST Collaboration Meeting



When to start hydrodynamics?
Two nuclei 
overlapping time

⌧ ⇠ 2R

�vz

• Nuclei overlapping 
time is large at low 
collision energy

• Pre-equilibrium 
dynamics can play 
an important role
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Go beyond the Bjorken approximation

• The finite widths of the 
colliding nuclei are taken 
into account

Go beyond the Bjorken approximation
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Go beyond the Bjorken approximation

• The finite widths of the 
colliding nuclei are taken 
into account

Go beyond the Bjorken approximation

The interaction zone 
is not point like

y 6= ⌘s
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The 3D MCGlauber-LEXUS model
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• Collision time and 3D 
spatial position are 
determined for every 
binary collision
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points
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• QCD strings are randomly 
produced from collision 
points

• These strings are 
decelerated with a 
constant string tension   
                         before 
thermalized to medium
� = 1GeV/fm
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A 3D MCGlauber model
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Introducing longitudinal fluctuations
• Sample valence quarks from the incoming participants
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Introducing longitudinal fluctuations
• Sample valence quarks from the incoming participants
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• Sample the rapidity loss according to the LEXUS model
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Net baryon rapidity distribution
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• Different rapidity fluctuation results different net baryon 
rapidity distribution
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Net baryon rapidity distribution

Chun Shen

• Different rapidity fluctuation results different net baryon 
rapidity distribution

• The valence quark + LEXUS model provides a 
reasonable net baryon rapidity distribution compared 
to the RHIC BES data

valence quark 
+ LEXUS

C. Shen, B. Schenke, in preparation
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Quantify rapidity fluctuation

an,m =

Z
d⌘1
Y

d⌘2
Y

CN (⌘1, ⌘2)

Tn(⌘1)Tm(⌘2) + Tn(⌘2)Tm(⌘1)

2

• The size of the         coefficient can quantify the mount 
of longitudinal fluctuations

an,m
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Quantify rapidity fluctuation

• The a11 coefficient for dE/dy decreases at high collision 
energy because the system becomes more boost-
invariant
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Quantify rapidity fluctuation

• The a11 coefficient for dE/dy decreases at high collision 
energy because the system becomes more boost-
invariant

Chun Shen

dE/dy dNB/dy

• The a11 coefficient for dNB/dy increases at high collision 
energy because less net baryon number at mid-rapidity
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En(⌘) = �
R
rdrd�rne(r,�, ⌘)ein�R
rdrd�rne(r,�, ⌘)

• The initial eccentricities decorrelate along η direction 
faster with more longitudinal fluctuation and at lower 
collision energy

Quantify rapidity fluctuation
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Hydrodynamics with sources
Energy-momentum current and net baryon density are 
feed into hydrodynamic simulation as source terms

@µJ
µ = ⇢

source

@µT
µ⌫ = J⌫

source

heats up the system
⇢
source dopes baryon charges into the system

accelerates the flow velocity

where

�u⌫ =
�⌫

µJ
µ
source

e+ P

J⌫
source

= �eu⌫ + (e+ P )�u⌫

• Source terms are smeared with Gaussians in space 
and time
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Hydrodynamical evolution with sources
energy density

x η
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valence quark + LEXUS

p
sNN = 19.6GeV



Hydrodynamical evolution with sources
net baryon density
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valence quark + LEXUS
x η

p
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Progress in hydrodynamics



(3+1)D vHydro and vaHydro — a comparison
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Dissipative hydrodynamics

=euµu⌫�(P+⇧)�µ⌫+⇡µ⌫Tµ⌫
�µ⌫ = gµ⌫ � uµu⌫

Energy momentum tensor

Conserved currents
Jµ =nuµ+qµ

rµ = �µ⌫@⌫

Equations of motion

Dissipative quantities are evolved with 2nd order Israel-
Stewart type of equations

⇡µ⌫ ⇠ 2⌘rhµu⌫i ⇧ ⇠ �⇣@µu
µ qµ ⇠ rµ µ

T

At Navier-Stokes limit,
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@µJ
µ = 0

P (e, n)+
@µT

µ⌫ = 0
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EoS at finite μB

• Lattice QCD EoS up to O(µ4
B)

• Glued with hadron resonance gas EoS

High temperature:

Low temperature:
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Dissipative part:

�µ⌫Dq⌫ = � 1

⌧q
(qµ � rµµB

T
)� �qq

⌧q
qµ✓ � �qq

⌧q
q⌫�

µ⌫

�µ⌫
↵�D⇡↵� = � 1

⌧⇡
(⇡µ⌫ � 2⌘�µ⌫)� �⇡⇡

⌧⇡
⇡µ⌫✓ � ⌧⇡⇡

⌧⇡
⇡�hµ�⌫i

� +
�7

⌧⇡
⇡hµ
↵ ⇡⌫i↵

⌘T

e+ P = 0.08

Transport coefficients

With non-zero μ, we choose ⌧⇡ = ⌧q =
0.4

T

⌘/s BµB/⇢B
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T

⌘
� ⇢BT
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◆

(relaxation time approximation)
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Transport coefficients
R. Rougemont, R. Critelli, J. Noronha-Hostler, J. Noronha and C. Ratti, Phys. Rev. D 96, 014032 (2017)

The holographic Einstein-Maxwell-Dilation (EMD) model is fit to 
the lattice results on thermodynamic quantities at μB = 0

Predictions are made for thermodynamic variables at finite μB and 
for the temperature and μB dependence of various transport 
coefficients
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Effects of net baryon diffusion on particle yields

• More net baryon numbers are transported to mid-rapidity 
with a larger diffusion constant

0-5% 0-5%

Constraints on net baryon diffusion and initial condition
Chun Shen 22/26

AuAu@19.6 GeV

C. Shen, G. Denicol, C. Gale, S. Jeon, A. Monnai, B. Schenke, in preparation
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• Net baryon diffusion results a flatter spectra for 
anti-proton compared to proton’s

Effects of net baryon diffusion on pid spectra

esw = 0.3GeV/fm3 0-5%
p
sNN = 19.6GeV

|y| < 0.5

0.046 0.091 0.158hp?ip̄ � hp?ip

(GeV)

CB = 0.0 CB = 0.4 CB = 1.2
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Stochastic Hydrodynamics
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C. Young, J. Kapusta, C. Gale, S. Jeon and B. Schenke, Phys. Rev. C 91, 044901 (2015)

Stochastic 
noise

@µ(T
µ⌫
ideal + �Tµ⌫ + ⇡µ⌫ + �⇡µ⌫ + ⌅µ⌫) = 0

Shear 
fluctuation 

ideal 
fluctuation 

Treat thermal noise as perturbation

with noiseno noise
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Stochastic Hydrodynamics
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• The scalar product vn(pT) increases with thermal fluctuation; 
Higher order vn shows stronger sensitivity 

• Thermal fluctuation reduces the correlation between 
different orders of event-plane angles
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Conclusion
• We develop a dynamical initialization model to 

study the early time evolution of heavy-ion collisions 
at the BES energies

full (3+1)-d event-by-event with net baryon current

• We identified a few experiment observables that could 
constrain the net baryon diffusion

hp?ip̄ � hp?ipdNp�p̄/dy

• Thermal fluctuation is coupled to hydrodynamic 
evolution to study its impact on hadronic observables
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