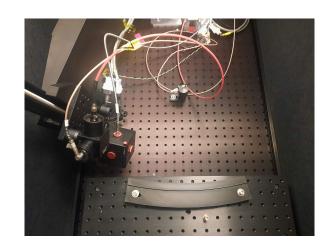
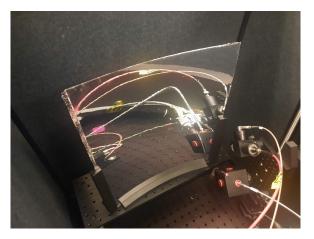
Large mirror test stand

Jan Vanek 08/04/2025

Overview

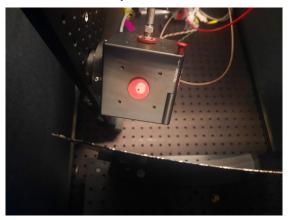
New large mirror holders

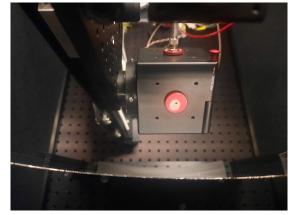

Reference mirror holder

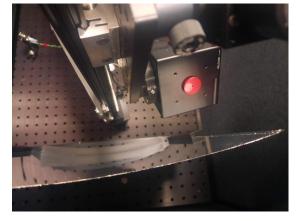

- First test scan
 - Full scale mirror

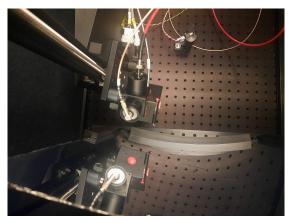
- Small flat mirror holder
 - For surface scan test to evaluate "dark spot" and other coating challenges

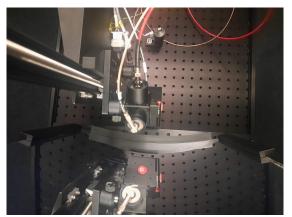
Large mirror holder

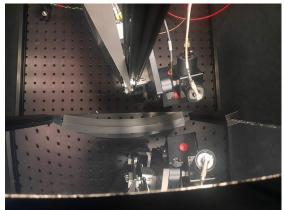

- Curved base with correct curvature
- Side supports to ensure correct tilt and curvature
 - Grooves are 1 mm wide and 1 cm deep to provide sufficient support
- Performed beam alignment test (next slide)
 - Good alignment in tilt (linear stage)
 - Need to optimize alignment in curvature (rotating stage)
 - Will check curvature and position (left/right)
 of mirror relative to rotating stage
 - Should not be a problem for full mirrors with all supports
 - Need to optimize input fiber size
 - Beam spot too large now easily falls out of integrating sphere input port





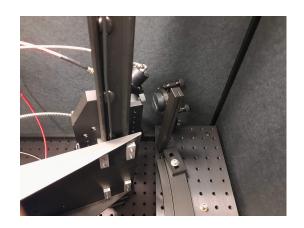

Beam alignment test


Six positions on mirror surface close to top and bottom edge of the mirror



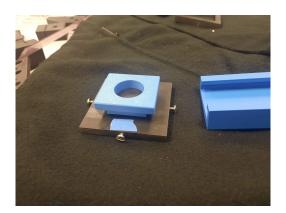
Reference mirror holder

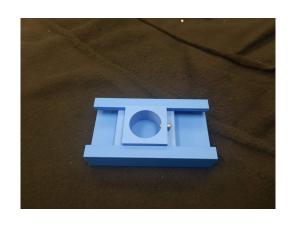
- Designed and 3D printed holder for reference mirror
 - Integrated 7.5 deg tilt, matching full scale mirror
 - Allows to remove/put on protective cover when installed in the test stand
 - Mounting done using standard 1" holder
 - Allows fine position adjustment



Reference mirror holder

- Designed and 3D printed holder for reference mirror
 - Integrated 7.5 deg tilt, matching full scale mirror
 - Allows to remove/put on protective cover when installed in the test stand
 - Mounting done using standard 1" holder
 - Allows fine position adjustment


Fist test scan


- Finished first version of output data format
 - Fully installed and tested
- Scanning procedure:
 - Measure dark current
 - Now done for each measure point on the mirror to test "uniformity of darkness" in the box
 - Perform measurement with light source
 - First measure reference mirror
 - Then measure NxN points on mirror surface
 - Done for 3x3 for testing
 - Now have only spectra (not reflectivity)
- To-do:
 - Prepare plots
 - Develop reflectivity measurement analysis macro


Flat mirror holder

- New holder for flat mirrors to perform surface scan in the large test stand with built-in 7.5 deg tilt
 - Allows manually shifting mirror in horizontal direction
 - Vertical direction will be covered by linear stage movement
 - Uses original mirror holder from small stand
 - We have a new holder for small stand which allows similar measurement with the small test stand
 - We will be able to do cross-check measurements
 - Mounting done using standard 1" holder

Summary

- Large mirror test stand close to be fully ready for full reflectivity measurements
 - Working scanning procedure, including reference mirror
 - Working first version of output format
- New holder for surface scan with small flat mirrors

- To-do:
 - Improve alignment of full scale mirror with respect to rotating stage
 - Optimize input fiber
 - Currently using 600 µm fiber which gives too large beam spot
 - Solutions:
 - Use smaller (400 μm) fiber?
 - Use different collimator?
 - Prepare macro for reflectivity calculation

Estimated work timeline – **previous** status

1. May

- a. Readout finished
 - Result: Readout software successfully installed and successfully tested
- b. Steering of stages
 - i. Both rotational and linear stage operational
 - ii. Cross-check homing precision for rotating stage should be good enough for now

2. June

- a. Development and optimization of steering and readout software
- b. Prepare for scans of small and large mirrors
 - i. Installation of the optical table to the dark box
 - ii. Optimization of output data format ongoing, will be finished with coated mirror
 - Curved mirror holders minor updates needed

3. July

- a. First test scans with coated mirror (first full scale mirror coating this week)
- b. Deploy full reflectivity scanning framework, including documentation (finish by ca. July 11)
 - i. Present progress at Collaboration meeting
- c. Start full mirror scans (have ready by end of July)

4. August

- a. Make sure everything is working and properly documented for anyone to take over (by August 15)
- b. Help with any leftover items (by end of my contract at BNL, August 21)

Estimated work timeline – **current** status

1. May

- a. Readout finished
 - i. Result: Readout software successfully installed and successfully tested
- b. Steering of stages
 - i. Both rotational and linear stage operational
 - ii. Cross-check homing precision for rotating stage should be good enough for now

2. June

- a. Development and optimization of steering and readout software
- b. Prepare for scans of small and large mirrors
 - i. Installation of the optical table to the dark box
 - ii. Optimization of output data format
 - iii. Holders: Curved full scale mirror, reference mirror, small flat sample mirrors

3. July

- a. First test scans with coated mirror
- b. Ready for first full scans minor updates may be needed
- c. Deploy full reflectivity scanning framework, including documentation

4. August

- a. Make sure everything is working and properly documented for anyone to take over (by August 15)
- b. Help with any leftover items (by end of my contract at BNL, August 21)