Search for Chiral Magnetic Effect at RHIC : challenges and opportunities

Prithwish Tribedy

BNL seminar, April 18, BNL, Upton, NY, USA

Based on: arXiv: 1704.03845

And results presented at:

QCD workshop on Chirality, Vorticity and Magnetic Field in Heavy Ion Collision, UCLA, USA Quark Matter 2017, Chicago, USA

Early Stages of Heavy Ion collisions

Early stages of heavy ion collisions can produce gauge field configurations with non-trivial topologies

Kharzeev, Krasnitz, Venugopalan hep-ph/0109253, Buividovich 0907.0494, Mace, Schlichting, Venugopalan 1601.07342

Many references & recent review: Kharzeev, Liao, Voloshin, Wang 1511.04050 Skokov *et al.* 1608.00982

Early Stages of Heavy Ion collisions

Early stages of heavy ion collisions also produce strongest electro-magnetic field

Strength: eB $\sim (m_{\pi})^2 \sim 10^{18}$ Gauss

Direction: \bot reaction plane Ψ_{RP} (mid-central, symmetric A+A)

Kharzeev et al 0711.0950, Skokov et al 0907.1396, Bzdak, Skokov 1111.1949, McLerran, Skokov 1305.0774

The Chiral Magnetic Effect

QCD anomaly driven chirality imbalance leads to current along B-field

Kharzeev hep-ph/0406125; Kharzeev, Zhitnitsky 0706.1026; Kharzeev, McLerran, Warringa 0711.0950; Fukushima, Kharzeev, Warringa 0808.3382

The Chiral Magnetic Effect

Real-time first principle lattice calculations of CME

Muller, Schlichting, Sharma, PRL 117 142301 (2016) Mace, Mueller, Schlichting, Sharma PRD 95, 036023 (2017)

Formation of dipoles in the initial charge distribution

Observables of CME

CME current can lead to out-of-plane charge dependent dipoles in the produced hadron distribution

Dipole in the initial charge distribution

see Kharzeev, Liao, Voloshin, Wang 1511.04050

Dipole in distribution of produced hadrons:

$$\frac{dN_{\pm}}{d\phi} \propto 1 + 2v_1 \cos(\phi - \Psi_{\rm RP}) + 2v_2 \cos[2(\phi - \Psi_{\rm RP})] + \dots + 2u_2 \sin(\phi - \Psi_{\rm RP}) + \dots,$$

Observables of CME

Harmonic decomposition should reflect the P-odd effect

$$\frac{dN_{\pm}}{d\phi} \propto 1 + 2v_1 \cos(\phi - \Psi_{\rm RP}) + 2v_2 \cos[2(\phi - \Psi_{\rm RP})] + \dots$$

$$\dots + 2a_{\pm} \sin(\phi - \Psi_{\rm RP}) + \dots,$$

Only correlations survive flipping of dipole

$$\langle \sin(\phi_{\alpha} - \Psi_{RP}) \sin(\phi_{\beta} - \Psi_{RP}) \rangle$$

Sergei's γ -correlator :

$$\begin{split} \gamma^{\alpha,\beta} &= \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle \\ &= \langle \cos(\phi_{\alpha} - \Psi_{RP}) \cos(\phi_{\beta} - \Psi_{RP}) \rangle \\ &- \langle \sin(\phi_{\alpha} - \Psi_{RP}) \sin(\phi_{\beta} - \Psi_{RP}) \rangle \end{split}$$

3-particle-correlator: $C_{112} = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{c}) \rangle$

Early measurements from STAR

Early observation of charge separation in Au+Au 200 GeV

Adamczyk et al PRL 103, 251601 (2009), PRC 88 (2013) 6, 064911

Indication that pairs of same-charges preferably flow together & out-of plane

Weak preference for opposite charges Multiple sources of background?

Sources of background

Background can contribute only in a very specific way

Sergei's γ -correlator :

$$\gamma^{\alpha,\beta} = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle$$

$$= \langle \cos(\phi_{\alpha} - \Psi_{RP}) \cos(\phi_{\beta} - \Psi_{RP}) \rangle$$

$$-\langle \sin(\phi_{\alpha} - \Psi_{RP}) \sin(\phi_{\beta} - \Psi_{RP}) \rangle$$

$$= [\langle v_{1,\alpha} v_{1,\beta} \rangle + B_{\text{IN}}] - [\langle a_{\alpha} a_{\beta} \rangle + B_{\text{OUT}}]$$

Directed flow In-plane Interesting (small at $|\eta| < 1$)

background

Signal

Out-of-plane background

 $(B_{IN} - B_{OUT}) \sim v_2/N$ ~ v₂ (anisotropy) ~ 1/ Multiplicity (random-walk)

$$\gamma^{\alpha,\beta} = -\langle a_{\alpha} a_{\beta} \rangle + c \, \frac{v_2}{N}$$

LCC + radial + Flow → stronger correlation between in-plane opposite charge pairs predicted

$$\gamma^{\alpha,\beta} = -\langle a_{\alpha}a_{\beta}\rangle + c \frac{v_2}{N}$$

Local charge conservation:

$$c > 0 \text{ if } \alpha \neq \beta \Rightarrow \gamma_{os} > 0$$

$$c = 0 \text{ if } \alpha = \beta \Rightarrow \gamma_{ss} = 0$$

$$\gamma_{os} - \gamma_{ss} > 0$$

LCC explains $\Delta \gamma = (\gamma_{os} - \gamma_{ss})$ but not $\gamma_{os} \& \gamma_{ss}$ separately

Momentum conservation leads to negative γ_{os} & γ_{ss} but $\Delta \gamma = 0$

Strong correlation between opposite charge pair predicted by Blast Wave model : LCC + radial + Flow

Pratt 1002.1758, Pratt, Schlichting, Gavin1011.6053 Bzdak, Koch, Liao 1008.4919

LCC explains $\Delta \gamma = (\gamma_{os} - \gamma_{ss})$ but not $\gamma_{os} \& \gamma_{ss}$ separately

Momentum conservation will predict negative γ_{os} & γ_{ss} but $\Delta \gamma = 0$

Strong correlation between opposite charge pair predicted by Blast Wave model : LCC + radial + Flow

Pratt 1002.1758, Pratt, Schlichting, Gavin1011.6053 Bzdak, Koch, Liao 1008.4919

LCC explains $\Delta \gamma = (\gamma_{os} - \gamma_{ss})$ but not $\gamma_{os} \& \gamma_{ss}$ separately

Momentum conservation will predict negative γ_{os} & γ_{ss} but $\Delta \gamma = 0$

Strong correlation between opposite charge pair predicted by Blast Wave model : LCC + radial + Flow

Pratt 1002.1758, Pratt, Schlichting, Gavin1011.6053 Bzdak, Koch, Liao 1008.4919

LCC explains $\Delta \gamma = (\gamma_{os} - \gamma_{ss})$ but not $\gamma_{os} \& \gamma_{ss}$ separately

Momentum conservation will predict negative γ_{os} & γ_{ss} but $\Delta \gamma = 0$

Background: Model comparison

$$\gamma^{\alpha,\beta} = -\langle a_{\alpha} a_{\beta} \rangle + \left[c \frac{v_2}{N} \right]$$

No (single) event generator can describe all aspects of the data Some of the qualitative features can be explained

Background: p+A collisions

New measurements at the LHC → new puzzles

Surprising similarity between p+Pb & Pb+Pb and between RHIC & LHC

"Challenge to CME" ?

Recent measurements from STAR

STAR Detector

Time-Projection Chamber (used for this analysis)

Data Set:

U+U 193 GeV (2012), Au+Au 200 GeV (2011), p+Au 200 GeV (2015)

Acceptance : $0 < \phi < 2\pi$, $|\eta| < 1$, $p_T > 0.2$ GeV/c

Centrality:

Time Projection Chamber Zero Degree Calorimeter

Observables:

Voloshin, PRC 70 (2004) 057901

Three particle correlator : $C_{112} = \langle \cos(\phi_1 + \phi_2 - 2\phi_3) \rangle$

LPV correlator: $\gamma^{a,b} \sim \frac{\langle \cos((\phi_1^a + \phi_2^b - 2\phi_3)) \rangle}{v_2\{2\}}$, $v_2\{2\}^2 = \langle \cos(2(\phi_1 - \phi_2)) \rangle$

Revisit: Magnetic field in HICs

Quantity of interest is the projection of B on Ψ_2

$$a_{\pm} \propto \mu_5 \vec{B} \implies \langle a_{\alpha} a_{\beta} \rangle \propto |\vec{B}|^2 \implies \langle B^2 \cos(2(\Psi_B - \Psi_2)) \rangle$$

Projected B-field

$$\langle B^2 \cos(2(\Psi_B - \Psi_2)) \rangle$$

Observable

$$\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle$$

mid-central

central

17

Why background removal is difficult?

Attempts to reduce flow also reduces the ability to resolve the direction of event plane and therefore the direction of projected B-field

Disentangling the effects driven by B-field and flow is challenging

How to deal with this problem

A list provided by Sergei Voloshin during QM 2017

- Beam energy scan II (signal should disappear at lower energies)
- Vary magnetic field keeping the same flow (isobar collisions)
- Higher harmonic correlators (+ differential)
- Event Shape Engineering (increase/decrease background)
- Correlations with identified particles (e.g. for the next bullet)
- Cross-correlation of different observables, CME X CMW X CVE) (both in experiment and theory)
- U+U (body-body vs tip-tip ??)
- Very central collisions (Signal ~0, BG>0)
- Small system collision (??)
- Studies of EM fields
- Improving the phenomenology
- Try a new observable

https://indico.cern.ch/event/433345/contributions/2345400/attachments/1407180/2150703/voloshin_CAEs_v2.pdf

Signal & Backgrounds of charge separation

Charge separation (central-events)

$$\gamma^{\alpha,\beta} = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{2}) \rangle = -\langle a_{\alpha}a_{\beta} \rangle + c\frac{v_{2}}{N}$$
$$\Delta \gamma = \gamma^{OS} - \gamma^{SS} = \left\langle \sum_{\alpha,\beta} -a_{\alpha}a_{\beta} \right\rangle + c\frac{v_{2}}{N}$$

Backgrounds

Two possible scenarios

Measurements in central-events may help disentangle the two effects

$$\Delta \gamma = \gamma^{OS} - \gamma^{SS} = \left\langle \sum_{\alpha, \beta} -a_{\alpha} a_{\beta} \right\rangle + c \frac{v_2}{N}$$

If B-field dominates

If Background dominates

Central and Ultra-central Collisions

Projected B-field vs ε₂ can provide a natural explanation to the data

More theory inputs needed to see if a background model can explain data

Central and Ultra-central Collisions

Peripheral collisions in A+A

However complicated background effects may arise in peripheral events

Jet-fragmentation \rightarrow Jets define the Ψ_2

A new approach to reduce background

Early time effects \rightarrow should be long-range in $\Delta \eta$

Differential measurement of correlation in Δη may be a key to disentangle signal and background

Structure of the correlations in $\Delta\eta$

Three-particle correlation

(numerator of $\gamma^{\alpha\beta}$)

A new approach to reduce background

Search of early time charge separation \rightarrow should be long-range in $\Delta \eta$

Short-range limit : $\Delta \phi \to 0, \Delta \eta \to 0$: $C_{112} = \langle \cos(\phi_1(\eta_1) + \phi_2(\eta_2) - 2\phi_3) \rangle \ge 0$

$$C_{112}(\Delta\eta_{12}) = A_{SR}^+ e^{-(\Delta\eta)^2/2\sigma_{SR}^2} - A_{IR}^- e^{-(\Delta\eta)^2/2\sigma_{IR}^2} + A_{LR} \longrightarrow \text{Pedestal}$$
 Short-range-positive Residual

Comparison between A+A centralities

Very different structures in central and peripheral events

Centrality dependence of charge separation

Charge separation has a narrow and wide Δη component

Magnitudes of different components

0.03 U+U 193 GeV Residual Short-range-positive 0.01 STAR preliminary 0 100 200 300 400 500 Npart

Widths of different components

Wider $\Delta \eta$ component (Short-range-positive) \rightarrow 0 for small & large N_{part} The narrow $\Delta \eta$ component (Residual) grows at small N_{part}

CMS measurements in p+Pb collisions

What does this mean?

$$\gamma^{\alpha,\beta} = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{2}) \rangle = -\langle a_{\alpha}a_{\beta} \rangle + c\frac{v_{2}}{N}$$

Interpretations by CMS:

PRL 118 (2017) 122301

 $\Delta \gamma$ (OS-SS) agree between systems

The γ seems have no sensitivity to the CME signal $\gamma^{\alpha,\beta} \propto \frac{\sigma_2}{N}$

CMS measurements in p+Pb collisions

Puzzling feature of CMS data

$$\gamma^{\alpha,\beta} = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{2}) \rangle = -\langle a_{\alpha} a_{\beta} \rangle + c \frac{v_{2}}{N}$$

Puzzle:

If $\frac{v_2}{N}$ changes by 40% between systems, why $\gamma^{\alpha,\beta} \propto \frac{v_2}{N}$ is still same ?

p+Pb data challenge both signal and background interpretations?

PbPb centrality(%)

STAR measurements of p+A vs A+A

p+Au → similar to peripheral A+A, different from central A+A

Comparison between p+A & peripheral A+A

p+A & peripheral A+A → dominated by short-range correlations

Comparison between p+A and A+A

Summary of STAR results in A+A & p+A

P. Soerensen QM 2017

Independent analysis also confirm vanishing signal in p+Au

Lacey, Ajitanand QM2017 poster

Summary of STAR results in A+A & p+A

Data (wide $\Delta \eta$ component)

Projected B-field in A+A

Summary of results in A+A and p+A

Data (wide $\Delta \eta$ component)

Projected B-field in A+A

Summary of results in A+A and p+A

Projected B-field in A+A

Summary of results in A+A and p+A

Data (wide $\Delta \eta$ component)

Projected B-field in A+A

Wider $\Delta \eta$ component of charge separation vanishes when projected $B \rightarrow 0$, $v_2 \neq 0$

(Naive background model $\Delta \gamma \sim v_2/N$ can not explain this)

Outlook for isobar collisions at RHIC

The idea is to change B-field without changing background

$$_{44}Ru^{96} + _{44}Ru^{96} \xrightarrow[\sqrt{s} = 200 \text{ GeV}]{} _{40}Zr^{96} + _{40}Zr^{96}$$

Different B-field with same flow background is expected

1.2 B events can provide about 5σ confidence of signal/bkg

Gang Wang, QCD Chirality workshop '2016, Deng et al PRC 94, 041901 (2016), Skokov et al, 1608.00982

What else can be done?

Future Run (2018)

Zr +Zr

Single (b=0) collision in IP-Glasma model, Ru, Zr parameters: Deng et al PRC 94,041901 (2016)

Ru +Ru

Au+Au, U+U

Measurements exist

Change in Z by 13 Large difference in B-field?

Multiplicity and flow in Au+Au & U+U

Background expectation is under control : $\Delta\gamma_{ ext{Background}} \approx \frac{v_2\{2\}}{N}$

At the same N_{part} multiplicity $dN/d\eta$ per participant is similar $v_2\{2\}$ measurement with very small uncertainties available

Projected B-field differs in central collisions

One needs to take care of shape difference between Au+Au & U+U

At same N_{part} projected B-field differs when scaled by ε₂ or v₂

Larger B-field per eccentricity in U+U than Au+Au at large N_{part}

Motivation: Qualitatively similar scenario as isobar collisions

Comparison between Au+Au and U+U

Perform three component fit to remove fragmentation, HBT-like peak

$$C_{112}(\Delta\eta_{12}) = A_{SR}^{+} e^{-(\Delta\eta)^{2}/2\sigma_{SR}^{2}} - A_{IR}^{-} e^{-(\Delta\eta)^{2}/2\sigma_{IR}^{2}} + A_{LR} \longrightarrow \text{Pedestal}$$

Short-range-positive

Residual

Residual components

Relative pseudo-rapidity dependence looks similar

Short range-positive (narrow Δη) component

Residual (wide Δη) components

$$\Delta \gamma_{\text{Background}} \approx \frac{v_2\{2\}}{N}$$

In a pure background scenario this plot should be flat & universal

System dependence → not explained by naive background model

Summary

- Ultra-central U+U and Au+Au show $\Delta \gamma \sim 0$, v₂≠0
 - Short-range-positive component (ASR)
- subtracted charge separation vanishes in central & peripheral A+A and in p+A collisions
- Comparison between Au+Au and U+U show difference in central events at same N_{part}

Several similarities of charge separation with projected B-field is observed in contrast to naive background (~v₂/N) expectation. Theoretical inputs needed to see if sophisticated background model calculations can explain these observations.

Future Isobar collisions at RHIC will provide more stringent test to disentangle background vs B-field driven charge separation.

Backup

Ultimately boils down to two scenarios

