

Plans for inclusive systematics studies

S. Maple (Birmingham), W. Lin (SBU), T. Kutz (Mainz)

Inclusive Systematics

- Inclusive measurements usually start from the reduced cross section
 - Structure functions for ep/eA: F_{2,L} from xsec and model or Rosenbluth separation, double spin asymmetries from xsec in different beam polarisations
 - Focus on systematics for inclusive NC cross section for now
 - CC to come when we have someone working on the analysis
- Systematics for inclusive cross section measurements in ep were well studied at HERA
 - Where there are no MC studies that can be done to give an informed/justified value for a systematic, we can refer to previous HERA values as (hopefully pessimistic) estimates

What systematics are we concerned with?

There are many possible sources of systematic uncertainties → just look at H1/ZEUS

papers

Some contribute more than others

- Some of the most impactful ones are:
 - Electron Finding Efficiency
 - Electron Energy scale
 - Electron Polar Angle
 - Hadronic Energy scale
 - Background modelling
 - QED Radiative Corrections
- ...and of course, luminosity/polarisation measurements

Source	Region	Uncertainty	
	$z_{\rm imp} \le -150{\rm cm}$	0.5% unc. \oplus 0.3% corr.	
	$-150 < z_{\rm imp} \le -60 \rm cm$	0.3% unc. \oplus 0.3% corr.	
Electron energy scale	$-60 < z_{\rm imp} \le +20 {\rm cm}$	0.5% unc. \oplus 0.3% corr.	
	$+20 < z_{\rm imp} \le +110 {\rm cm}$	0.5% unc. \oplus 0.3% corr.	
	$z_{\rm imp} > +110{\rm cm}$	1.0% unc. \oplus 0.3% corr.	
Electron scale linearity	$E_e' < 11 \mathrm{GeV}$	0.5%	
Hadronic energy scale	LAr & Tracks	1.0% unc. \oplus 0.3% corr.	
Tradronic energy scale	SpaCal	5.0% unc. \oplus 0.3% corr.	
Polar angle	θ_e	1 mrad corr.	
Noise	y < 0.19	5% energy not in jets, corr.	
Noise	y > 0.19	20% corr.	
Trigger efficiency	high y	0.3 - 2%	
	nominal	0.3%	
Electron track and vertex efficiency	high y	1%	
Electron track and vertex efficiency	nominal	0.2 - 1%	
Electron charge ID efficiency	high y	0.5%	
Electron ID efficiency	$high \ y \ z_{imp} < 20 \ (> 20) \ cm$	0.5% (1%)	
Electron 1D emelency	nominal $z_{\rm imp} < 20~(>20)~{\rm cm}$	0.2% (1%)	
Extra background suppression	$E'_{e} < 10 {\rm GeV}$	$D_{ele} > 0.80 \pm 0.04$ corr.	
High y background subtraction	high y	1.03 ± 0.08 corr.	
OED redictive connections	$x < 0.1, 0.1 \le x < 0.3, x \ge 0.3$	0.3%, 1.0%, 2.0%	
QED radiative corrections	high y: $y < 0.8 (y > 0.8)$	1% (1.5%)	
Acceptance corrections	high y	0.5%	
Acceptance corrections	nominal	0.2%	
Luminosity		4% corr.	

<u>https://arxiv.org/abs/1/312,4821</u>~

Systematic uncertainty	Achieved at H1/ZEUS*	Expected at EIC [†]	Comments
Electron finder efficiency	0.2-5% (increase w y)	???	E-finder still being developed. Need efficiency benchmarks before uncertainty studies can begin.
Electron energy scale	0.5-1.9% (increase w y) (1-5% on σ)	???	ElCrecon defaults to tracks for electron "energy" → Work on combining track+calo info for e recon, and study energy scale unc (input from calo groups?)
Electron polar angle	1mrad	???	Input needed from tracking group on precision that modern alignment techniques offer
Hadronic energy scale	2% (0.5-4% on σ)	???	Input from calo groups needed?
Photoproduction background	10% (0.5-3% on σ)	2% on σ	Need generated photoproduction-only/merged events that use multiple event generators
QED radiative corrections	0.3-2% (increase w x,y)	1%	Need simulations with QED ISR/FSR switched <u>on</u> . Djangoh can be used, likely Pythia too
Luminosity	1.5%	1%	Is 1% still reasonable?
Polarisation	N/A	<1% ?	Is 1% still reasonable?

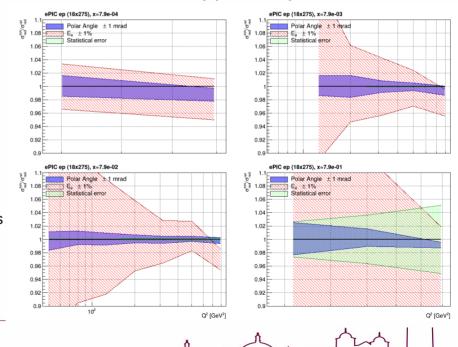
^{*} choosing the better of the values in previous publications from H1, ZEUS

Systematic uncertainty	Achieved at H1/ZEUS*	Expected at EIC [†]	Possible studies
Electron finder efficiency	0.2-5% (increase w y)	???	Tighten and relax cuts used in e-finding \rightarrow study variation in efficiency
Electron energy scale	0.5-1.9% (increase w y) (1-5% on σ)	???	Take single value estimate inspired by HERA?
Electron polar angle	1mrad	???	Take single value estimate inspired by HERA?
Hadronic energy scale	2% (0.5-4% on σ)	???	Take single value estimate inspired by HERA?
Photoproduction background	10% (0.5-3% on σ)	2% on σ	Compare number of events produced by different generators that are reconstructed as DIS
QED radiative corrections	0.3-2% (increase w x,y)	1%	Compare size of radiative correction in bins with two different event generators
Luminosity	1.5%	1%	Use 1%?
Polarisation	N/A	<1% ?	Use 1%?
			, A

^{*} choosing the better of the values in previous publications from H1, ZEUS

† numbers from YR

Plan moving forward


Some work already started: see inclusive meeting from <u>June 17th</u>

• Analysers with relatively complete analyses are to repeat their analyses with the estimated fluctuations in the systematic uncertainties and investigate the variations in the measured quantities.

Results

- After repeating the same analysis procedure (same acceptance and BCC), compare result to original analysis
- Note: at fixed x, lower Q² = lower y
- Systematics can be addressed in different ways
 - E scale uncertainty? DA method
 - Extend/merge bins in x/Q²

Very preliminary

