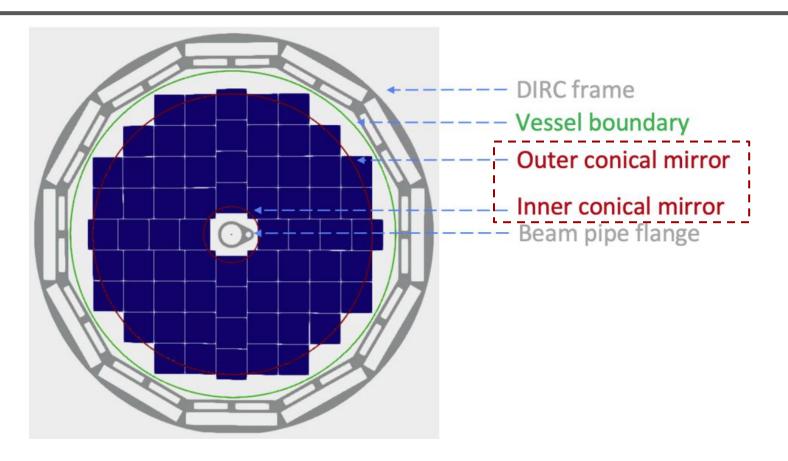
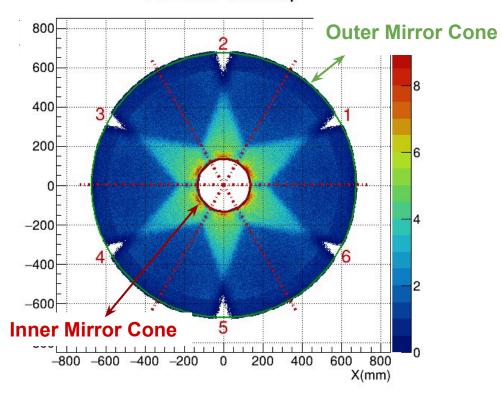

Laser Monitoring Designed for pfRICH


Design considerations

- Array of 6 fibers may be used for direct illumination of HRPPDs + array
- 6 fibers may be used to reflect light off of the mirrors
- 40 cm coverage (50 degree square diffuser)
- "Red" lasers fire 5-10 ns (different fiber length)

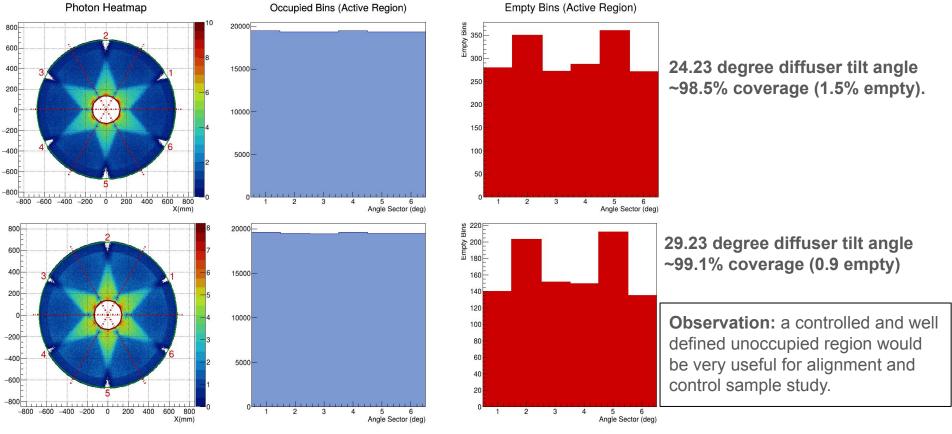
Square Pattern

Effective region covered by monitoring system


PED Objective

Two main objectives:

- 1. Measure the light profile from the splitter-diffuser combination (the setup used for this measurement meets the expectation).
 - a. Validate the diffuser lay profile.
 - b. Study the fiber properties.
 - c. Study the light uniformity from the diffuser (See Bob's slides).
 - d. Study light coverage from the diffuser. Lead to the diffuser procurement.
- 2. Assessing the feasibility of the proposed laser system in terms of light profile and generating input for the detector integration.
 - a. Finalized light profile, simulated vs measurement.
 - b. Design for the mounting. (See Dan's slides)


Light profile study from Trace Pro

Photon Heatmap

- Assumed 50 diffuser
- Only include inner and outer mirror cone.
 - No sensor plan information included.

Diffuser Angle Study

Study done by Zakia Sultana Tithi (MSU)

Diffusers offered by Thorlab

Standard ED1-S50 square pattern diffuser

- Profile and coverage is idea
- 1" size is too large to be used for pfRICH.

A smaller ED1-S50 square pattern diffuser:

- Dimensions: 5mm x 5mm +/-0.05mm with a 1.2mm thickness +/0.075mm
- A divergence angle of 47.2° x 45.4° +/-5%.
- Intensity profile: flat-top
- Input beam diameter: like the catalog part should be >0.5mm.
- Lead time: 12 weeks.
- Cost: \$106.50 each and a minimum order quantity of 40

Near future work

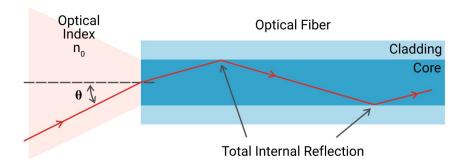
- Repeat the study with 41 degree diffusers.
- Include sensor plane in the study.
- Better understand the reflective rim from the inner and outer mirror cones.
- Implementing the diffusers that reflect of the mirrors.

PED Related Purchase

Item	Per Unit Cost (\$)	Quantit y	Total Price (\$)	Description
M405L4	256.22	1	256.22	LED
<u>SM1L05</u>	13.62	1	13.62	Tube
SM1FC	34.45	1	34.45	FCPC Plate
LEDD1B	355.18	1	355.18	Driver
ED1-S50-MD	158	2	316	50 degree diffuser + mounting parts (1" standard catalog)
KPS201	40.33	1	40.33	Power supply
Trace pro software	1533.33	1	1533.33	
S150C	381.34	1	381.34	compactfiber photodiode(It has shipped through fedex 16.47\$)
NarrowBand assembly(1*4)	1123	1	1123	1-4 splitter
			5028.94	

Items	Account (\$)	
1. Equipment cost	\$6,375	
2. Software licensing cost	\$1,500	
3. Machine shop cost	\$500	
4. Consumable cost	\$300	
5. Total direct cost (sum over 1 to 4)	\$8,675	
6. Modified total direct cost (sum over 2 to 4)	\$2,300	
7. Total indirect cost (46.5% of 6)	\$1,070	
Grand total cost (5+7)	\$9,745	

Projected PED spending: \$5028.94 + \$4264.0 (Diffuser cost) = \$9292.94


PED Objective with timeline

Two main objectives:

- 1. Measure the light profile from the splitter-diffuser combination (the setup used for this measurement meets the expectation).
 - a. Validate the diffuser lay profile.
 - b. Study the fiber properties.
 - c. Study the light uniformity from the diffuser (See Bob's slides).
 - d. Study light coverage from the diffuser. Lead to the diffuser procurement. [October 2025]
- 2. Assessing the feasibility of the proposed laser system in terms of light profile and generating input for the detector integration.
 - a. Finalized light profile, simulated vs measurement. [May 2026]
 - b. Design for the mounting.

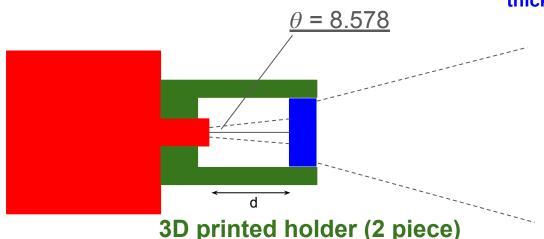
Backups

Numerical Aperture Calculation

$$NA = nsin\theta$$

Fiber numerical aperture: 0.22

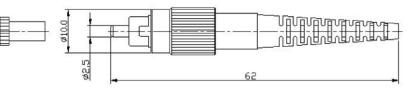
UV optical fiber index of refraction: 1.475

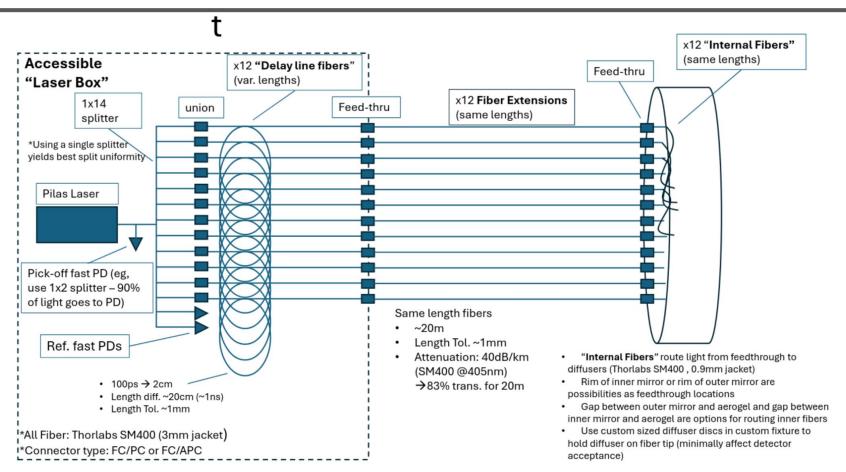

$$heta=\sin^{-1}\left(rac{NA}{n}
ight)$$

Angle: 8.578

Numerical Aperture Calculation

FC/PC connector (Ferrule size 2mm)


Square Diffuser (costumed made ED1-S50): 5mm x 5mm +/-0.05mm with a 1.2mm thickness +/0.075mm



Design consideration:

- Incoming signal size at the diffuser: > 0.5mm
- Outgoing signal size: 47.2° x 45.4° +/-5%
- Assume θ = 8.578, 0.75 mm spot size onto the diffuser, d = 2.5 mm
- Assume θ = 8.578, 0.90 mm spot size onto the diffuser, d = 3.0 mm
- Assume θ = 8.578, 3.00 mm spot size onto the diffuser, d = 9.94 mm

System Layout Designed by Bob Azmoun

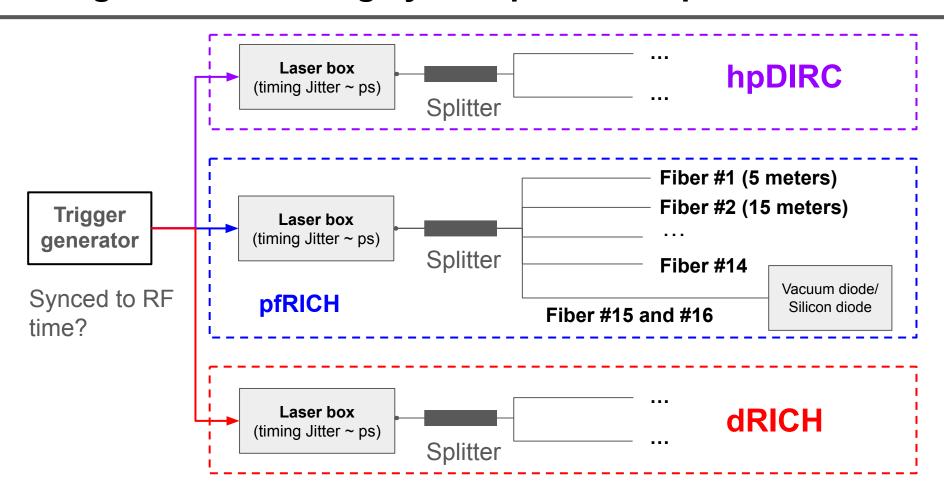
Synergistic among PID Systems

Common Laser Trigger pulse

- Controlled pulse triggers pfRICH, dRICH and hpDIRC laser system simultaneously.
- A team of experts monitor and calibrate the timing profile for all PID systems

Same hard components

- Common spare parts repository for expensive items, such as the Pilas laser system
- Same grade of fiber and diffuser


Same design engineering considerations

- Timing resolution requirement
- Laser signal diffused patterns: coverages and over laps
- Mounting themes and holders

Ongoing PED effort to answer common questions

- Small profile diffuser (0.5x0.5 square pattern) with square pattern possible? (Integration)
- Minimum bending radius and signal loss? (Engineering)
- Validate and optimize the envelopes with Ray Trace program

Integrated monitoring system pfRICH + hpDIRC + dRICH

