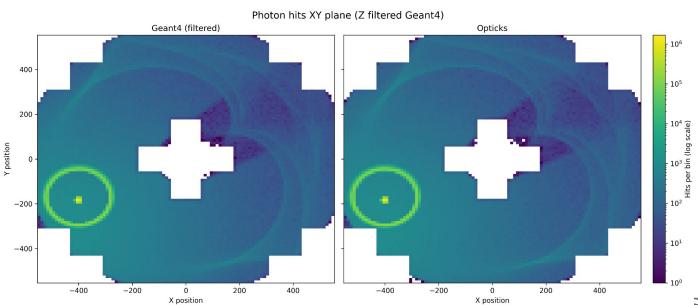


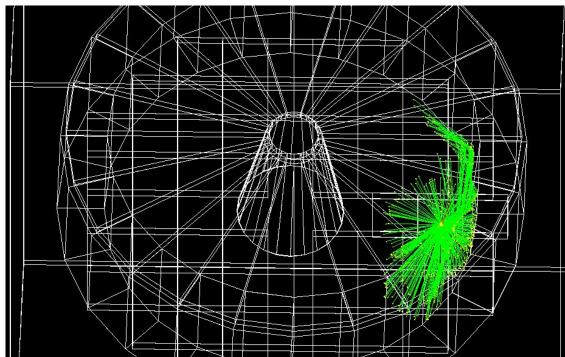
Opticks

- Opticks, uses NVIDIA OptiX framework to simulate photons on GPU
- Ray tracing + Monte Carlo
- Works together with Geant4:
 - Hadronic, EM etc are done on CPU (Geant4), only photons are offloaded to GPU
- Rayleigh scattering, Fresnel reflection, polarization, etc. was added to NVIDIA OptiX
- ~100-200x faster than a single thread of G4 CPU
- Imports "classic" GDML, just need a few tags for sensitive detectors
- How does it integrate with G4?
 - G4DetectorConstruction -> Pass the detector to GPU code
 - G4SteppingAction -> Record optical photons to be passed to GPU
 - G4RunAction / G4EventAction -> Simply call Simulate() on GPU

EIC-Opticks

- Modifications:
 - Opticks can only simulate one G4Event in a GPU simulation -> How many photons does hpDIRC have in a single G4event?
 - Large overhead when simulating less than 1M photons in a GPU call
 - EIC-Opticks extended usability to cases with much fewer photons (as in most EIC applications)
 - Added G4Event ID to GPU simulated photons
 - Allows to aggregate photons across events and process on the GPU in bulk
- Created a spack package
 - spack install eic-opticks ^optix-dev@7.9.0
 - EIC-Opticks is containerized, enabling seamless execution on any host with a modern GPU,
 without installation overhead
- Fixed some bugs, eg. rays were incorrectly blocked by transparent surfaces in certain volumes

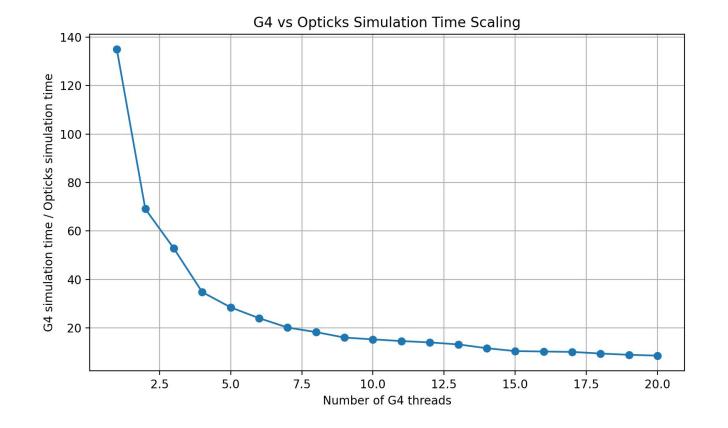



Validation and performance

- Had to replace TRD, TRAP volumes in pfRICH GDML: pyramids are flat, single aerogel volume instead of tiles
- Validated EIC-Opticks vs pure Geant4 for a simplified pfRICH geometry
 - 50k 5 GeV e⁻ a:

Geant4 hits: 13840566Opticks hits: 13840638

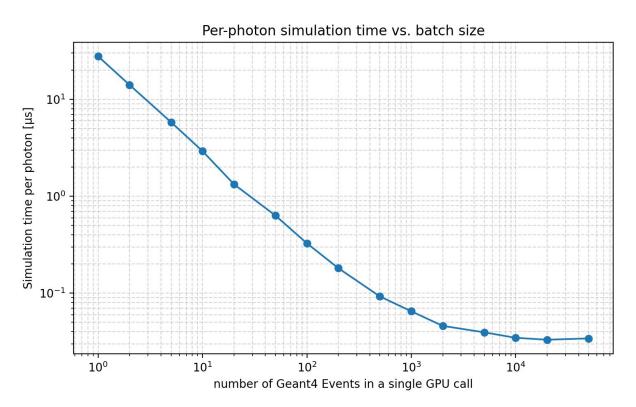
- Time measurement for EIC-Opticks included:
 - Data movement from CPU -> GPU
 - Ray tracing
 - Copying results from GPU -> CPU
- 160k 5 GeV $e^- \rightarrow \sim 100$ M photons
 - Single thread G4 CPU ~150 s
 - 20 threads MT G4 CPU ~10.5 s
 - o EIC-Opticks (GPU): ~1.1 s
 - ~ 137x speed-up wrt. single thread

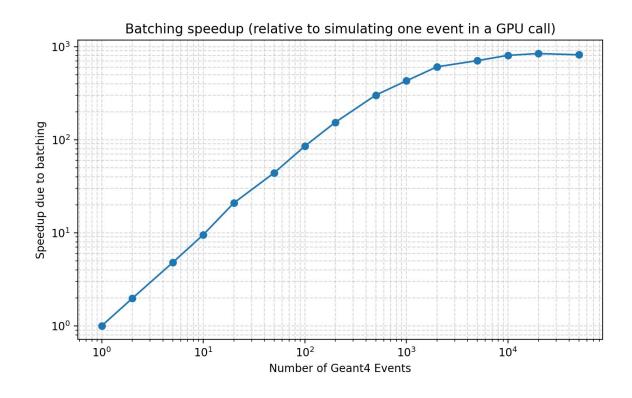


Performance

- Validated EIC-Opticks vs pure Geant4 for a simplified pfRICH geometry
 - o 50k 5 GeV e⁻a:

Geant4 hits: 13840566Opticks hits: 13840638


- Time measurement for EIC-Opticks included:
 - Data movement from CPU -> GPU
 - Ray tracing
 - Copying results from GPU -> CPU
- 160k 5 GeV $e^- \rightarrow \sim 100$ M photons
 - Single thread G4 CPU ~150 s
 - 20 threads MT G4 CPU ~10.5 s
 - EIC-Opticks (GPU): ~1.1 s
 - ~ 137x speed-up wrt. single thread



Event batching in EIC-Opticks

- We introduced event batching in EIC-Opticks
- Overhead, to start GPU simulation, run and return results
- For low energy events too high
- We introduced event batching
- In the case of pfRICH batching 50k event speeds up simulation time 1000x

