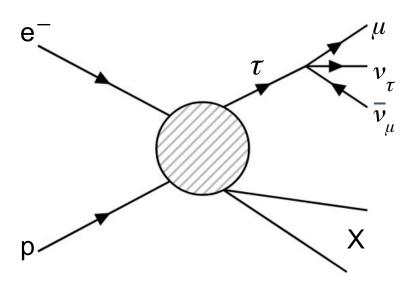
μlπ Separation from $e \rightarrow τ$ CLFV studies

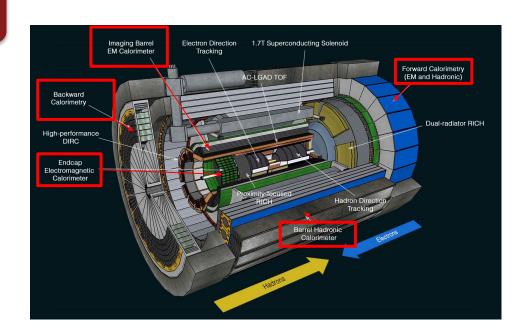
Andrew Hurley

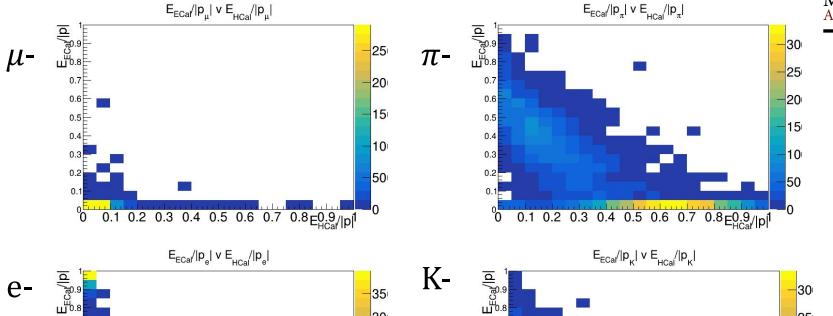

"1-prong" Muon Decay

$$au o \mu \overline{\nu}_{\mu} \nu_{\tau}$$

Pros: Suppression of SM background around $p^{\mu}_{t} > 15 \text{ GeV}$

~17% branching ratio


Con: requires good muon identification


μ/π PID Separation Overview

Detectors used for μ/π separation

- * Hadronic calorimeters (HCals) are a natural starting point for μlπ separation.
- Combining information from the electromagnetic calorimeters with the HCals improves μ/π separation in the following study.
- The following study focuses on the barrel region.
 - Near future plans to extend the study to the backward endcap.
 - Forward endcap μ-ID are ongoing elsewhere, but are not relevant to e→τ.

Using E/p in Both Barrel Calorimeters

0.7

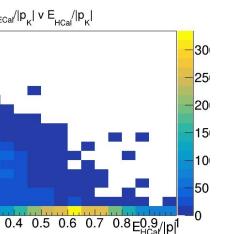
0.6

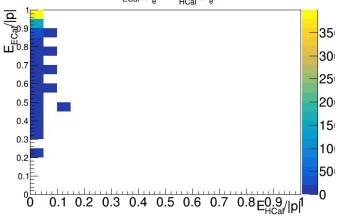
0.5

0.4

0.3

0.2

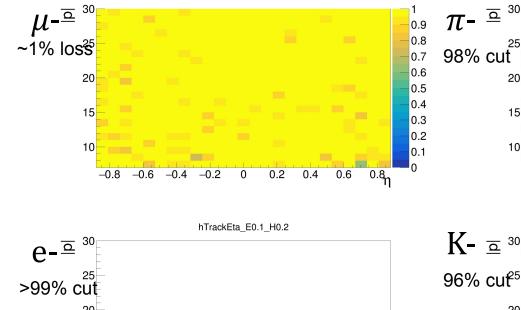

0.1

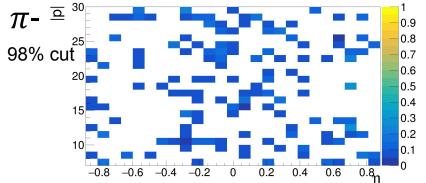

0.3

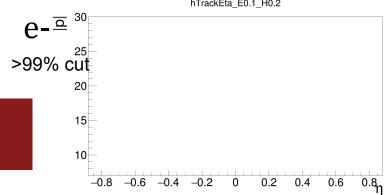
University of Massachusetts Amherst

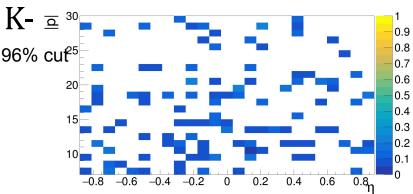
4

_




0.9


University of Massachúsetts **Amherst**


Z axis = events after combined E/p cut / events generated

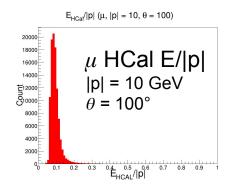
hTrackEta E0.1 H0.2

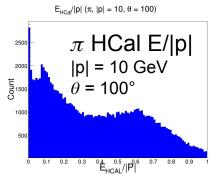


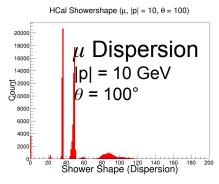
μ/π PID Study Data Set

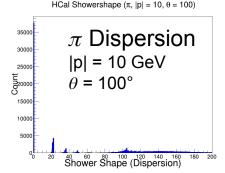
Simulation Details

- Single particle simulation using ddsim
 - > 100K μ and π at each momentum and production angle:
 - |p| = 1 to 15 GeV in 1GeV steps.
 - $\theta = 90^{\circ} \text{ to } 150^{\circ} \text{ in } 10^{\circ} \text{ steps.}$
- Simulated in the ePIC detector
- Reconstructed using the ElCrecon package

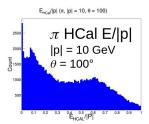



μ/π PID Values Used

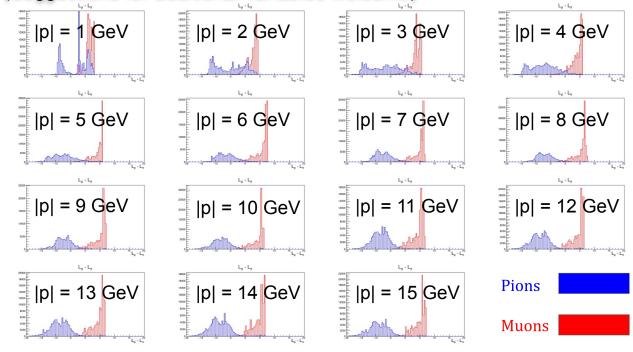

Reconstructed values used in this study


- Calorimeter $E_{cal}/|p|$ seems to be the most useful value in $\mu l \pi$ separation
- Dispersion (Energy weighted radius) improves separation somewhat.
 - Named 'Shower Shape' in the following slides.

Example Distributions

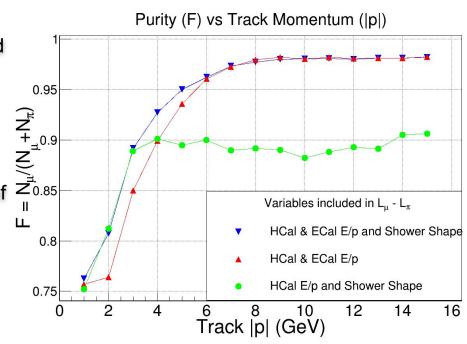


- Using a log-likelihood reduces the PID separation to a single variable to which cuts can be tuned for any given analysis.
 - > Easy to incorporate additional reconstruction values given sufficient data/simulation.
- Method:
 - > Take distributions such as:

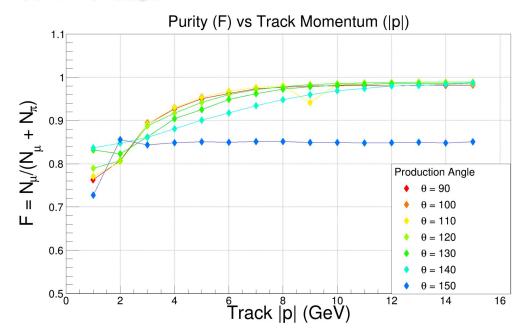

and treat them as probability distributions

- Calculate the log-likelihood for each track:

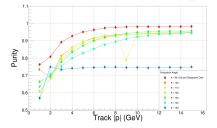
 - where j is the PID hypothesis (μ or π in this case).
 - i is each reconstructed value used (e.g. HCal E/|p|).
 - $p(q_{ji})$ is the probability a track has a value q_{ji} for the given PID hypothesis and reconstructed variable.
- ightharpoonup Cut on the log-likelihood difference L_{μ} L_{π}


μ/π PID, Log-likelihood Example

- \bullet L_u L_π for μ and π at θ = 90° with |p| = 1 GeV to 15 GeV in 1 GeV Steps.
- L_{μ} L_{π} calculated using HCal E/|p|, HCal Shower Dispersion, ECal E/|p|, and ECal Shower Dispersion. (Suggestions for additional variables welcome)


μ/π PID, Log-Likelihood (cont.)

- * Effect on L_{μ} L_{π} calculated using different combinations of HCal E/|p|, HCal Shower Dispersion, ECal E/|p|, and ECal Shower Dispersion.
- ♦ Cut on L₁ L₂ > 0
 - Somewhat arbitrary. Cut can be tuned to balance purity and efficiency for individual analyses.
- Chose a purity (N_μ/(N_μ+N_π)) as a figure of merit to compare the following input value combinations:
 - HCal & ECal E/|p| and Shower Shape
 - ➤ HCal & ECal E/|p|
 - ➤ HCal E/|p| and Shower Shape



μ/π PID, Log-Likelihood (cont.)

- L_{μ} L_{π} calculated using HCal E/|p|, HCal Shower Dispersion, ECal E/|p|, and ECal Shower Dispersion.
- Now plotting the purity figure of merit for samples generated at different angles
 - ➤ 90° to 150° in 10° steps

- Extend study to other regions of the ePIC detector.
- Calorimeter shower profiles.
 - Shower Widths (2nd moments)

- > HCal hit Isolation cut
- Hits or radius per layer
- Other suggestions welcomed
- Including other PID detector signals.
- Implementing Machine Learning tools.
- Extending study to other regions of the ePIC detector.