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Introduction 

• Storage ring linear optics correction techniques are well 
advanced with both orbit response matrix analysis and 
various methods of turn-by-turn analysis 

• Ultra-low emittance storage ring designs are pushing 
nonlinear dynamics hard.  Need beam-based nonlinear 
dynamics correction algorithms 

• For SPEAR3, we have went from 4 to 10 separate 
sextupole power supplies, and we wanted a beam-based 
algorithm to optimize the sextupole strength distribution 
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Widely used  
Nonlinear dynamics measurements 

 Nonlinear chromaticity 
 Closed orbit bump probe of local nonlinearity 
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θx and/or νx vs. xc.o. measures By integral vs. x 

Measured nonlinear kick from a SPEAR3 EPU, X. Huang, K. Tian 



 Nonlinear chromaticity 
 Closed orbit bump probe of local nonlinearity 
 Tune shifts with betatron amplitude, dνx,y/dJx,y 
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Widely used  
Nonlinear dynamics measurements 



 Nonlinear chromaticity 
 Closed orbit bump probe of local nonlinearity 
 Tune shifts with betatron amplitude, dνx,y/dJx,y 

 Tune scans, (σx,y, lifetime, DA, injection) vs. νx,y 

 

Widely used  
Nonlinear dynamics measurements 
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Vertical beam size vs. (νx, νy) at CESR,Temnykh et al., PAC03 



 Nonlinear chromaticity 
 Closed orbit bump probe of local nonlinearity 
 Tune shifts with betatron amplitude, dνx,y/dJx,y 

 Tune scans, (σx,y, lifetime, DA, injection) vs. νx,y 

 Energy acceptance (τ vs. VRF) 
 Dynamic aperture 
 Tune maps 

 

Widely used  
Nonlinear dynamics measurements 

νx0, νy0 νy 

νx 

3νx + 2νy = 67 
νs sidebands 

P. Kuske, Tune map at BESSY-II 



Resonance Driving Term (RDT) 
measurements 

A. Franchi et al., http://arxiv.org/abs/1402.1461, Feb, 2014 

http://arxiv.org/abs/1402.1461
http://arxiv.org/abs/1402.1461


Beam based optimization – tuning  

Beam based optimization (tuning): adjust the operating condition to optimize 
machine performance directly. 

System 

knobs 
Performance 

measures 

… 

𝑥𝑥1 
𝑥𝑥2 

𝑥𝑥𝑛𝑛 

𝑓𝑓1(𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) 

𝑓𝑓2(𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) 

We know the system works – changing input leads to performance responses. 
But we don’t know exactly how it works – the functions are unknown. 

Machine tuning is a multi-variable and (potentially) multi-objective 
optimization process. The function(s) is evaluated through the machine.  
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Beam-based nonlinear optimization 

 MOGA & PSO: powerful tools for accelerator design 
• Directly optimize numerical DA & lifetime 

 As-built low emittance rings will need nonlinear tuning 
• Directly optimize measured DA & lifetime? (or injection efficiency 

& loss rate). 
 Challenges 

• Noisy function evaluation (measurement) 
• Need fast, accurate measurement 
• Standard optimizer (Simplex, minimum gradient …) algorithms 

often fail due to measurement noise 
• Minimize # of function evaluations (i.e. measurements) 

 Previous beam-based optimization work includes 
• L. Emery et al., PAC2003. 
• M. Aiba et al., NIMA, 2012 

 
 

Presenter
Presentation Notes
Computers have become dominant tool in solving many scientific problems.  Hit it with a big computational hammer.  Algorithms designed for optimizing functions calculated to machine precision.  



Optimization algorithm development at SSRL/SPEAR3 

 Multi-Objective Genetic Algorithm (MOGA or SOGA) 
• Applied to minimize coupling using 17 skew quadrupoles  
• K. Tian, J. Safranek, and Y. Yan, Phys. Rev. ST-AB (2014) 

 Robust Conjugate Direction Search (RCDS) 
• Applied to coupling, top-off transient, LCLS undulator 

taper, etc...  
• X. Huang, J. Corbett, J. Safranek, J. Wu, NIMA (2013)  

 Particle Swarm Optimization (PSO) 
• Applied to numerical dynamic aperture optimization (see 

Xiaobiao’s presentation later today) 
• Applied to SPEAR3 coupling correction  
• X. Huang, J. Safranek, NIMA-D-14-00356 (2014)  



Machine Based Genetic Algorithm 

Selection 

population evaluation 

Reproduce 

discard 

parents 

children 

evaluated  
children 

Genetic Operations: 
•Crossover 
•mutation 

Reproduction Cycle 

Function Evaluator 

Decision Variables 

Objective 
Functions 

Goal: Experimental demonstration of the machine based Genetic 
Algorithm by minimizing vertical beam size by optimizing the 13 
skew quads in SPEAR3.  

K. Tian 
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Touschek Beam Loss and Vertical Beam Size   
  

Beam loss in modern electron storage ring is dominated by Touschek 
scattering, so vertical beam size is inverse proportional to normalized 
beam loss: 

Minimize vertical beam size    =       Maximize Touschek beam loss 

Objective Function:    -|dI/dt|/I^2 
 
Decision Variables :   strengths of the 13 skew quads 
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Beam Loss Measurement   
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Scraper
High Disper. Section

dc current transformer (DCCT):  
Direct measurement of the global beam loss; 
~10% uncertainty for 6 second integration with 500mA stored current 

Beam Loss Monitor:  
NaI Scintillator with PMT tube; 
High SNR; 
Fast 1Hz rate; 
Local beam loss; 
 Insert scraper to capture most 
of  the beam loss at one location. 

  

Beam 
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Experimental Verification    
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Global loss from DCCT, scaled
Emittance ratio, LOCO

Beam loss caused by tune shift or reduction of energy acceptance is 
not a major concern when varying the skew quads in SPEAR3. 

20 different setting of 
skew quads; 

 
 Vertical beam size 
measure at one location; 

 
 Global beam loss from 
DCCT 

 
 LOCO analysis for 4 
cases 

Average vertical beam 
size; 
Emittance ratio 
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MOGA coupling correction, SPEAR3   
  

211 generations and about 9 hours 
in total (<3 minutes /generation); 

 
 Refill the stored current to 100mA 
twice; 

 
 The optimization was paused 
during the fill and restarted by loading 
the dumped data after the fill 

 
 

~150th Generation 
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The development of the RCDS algorithm 

• The development was motivated by the need to optimize 
storage ring nonlinear beam dynamics. 
- Correction of nonlinear dynamics is difficult – lack of direct 

diagnostics, deterministic method, and even target.  
• Robust conjugate direction search (RCDS)* performs iterative 

search over conjugate directions with a robust (against noise), 
efficient line (1D) optimizer. 
- The conjugate direction set may be updated with Powell’s method. 
- The 1D robust optimizer is designed to deal with noise.  
 
 

*X. Huang, J. Corbett, J. Safranek, J. Wu, “An algorithm for online optimization of 
accelerators”, Nucl. Instr. Methods, A 726 (2013) 77-83.  
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Search over conjugate directions 

Inefficient search directions 

*W.H. Press, et al, Numerical Recipes 

It takes many tiny steps to get to the 
minimum  when searching along 𝑥𝑥 and 𝑦𝑦 
directions.  

*M.J.D. Powell, Computer Journal 7 (2) 1965 155 

A search over conjugate direction does not 
invalidate previous searches.   

Efficient search directions: conjugate directions 

Directions u and 𝐯𝐯 are conjugate if  
𝐮𝐮T ⋅ 𝐇𝐇 ⋅ 𝐯𝐯 = 0  

with 𝐇𝐇 being the Hessian matrix of function 𝑓𝑓(𝐱𝐱), 
𝐻𝐻𝑖𝑖𝑖𝑖 = 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗
. 

Around the minimum 
𝑓𝑓 𝐱𝐱𝑚𝑚 + Δ𝐱𝐱 = 𝑓𝑓 𝐱𝐱𝑚𝑚 + 1

2
Δ𝐱𝐱T ⋅ 𝐇𝐇 ⋅ Δ𝐱𝐱. 

Powell’s method can update the directions  
using past search results to develop a 
conjugate set.  
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Anatomy of a line optimizer that is sensitive to noise 

Step 1: Initially bracketing the minimum. 
Step 2: Successive interpolation to converge to the minimum.   

Inverse quadratic interpolation (figure from Numeric Recipes*.)  

*W.H. Press, et al, Numerical Recipes 

With noise, the comparison of values in both steps can go wrong and the 
algorithm won’t converge.  

Line optimizer – Brent’s method 
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The robust 1D optimizer 
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Initial solution 

The robust optimizer is aware of noise in bracketing and uses noise level to 
filter out outliers. Noise level is detected before optimization.  

Bracketing: step size is increased in the search. Bracket ends are higher than 
minimum by 3 noise sigma.  
Fitting: fill in additional points when necessary to better sample within the bracket 
and then fit a parabola.  

X. Huang et al, Nucl. Instr. 
Methods, A 726 (2013) 77-83.  
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Simulation results for three direct search methods 
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run1 6s
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(1) Showing history of the best solution.   
(2) The simplex method is efficient without 

noise, but fails to reach the minimum with 
noise.  

(3) Powell’s method works without noise, but 
fails with noise. The initial direction set are 
individual skew quads.  

(4) The RCDS method is efficient with or 
without noise.  

The performances of algorithms for noisy 
problems depends on the problems.  
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Detailed look of an RCDS run, SPEAR3 coupling 
correction 
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The algorithm converges fast but it does 
not stay right at the minimum – it keeps 
probing around.  
 
So usually we need to sort the solutions 
and apply the best one to the machine.  
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Coupling correction experiments on SPEAR3 with RCDS 
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Using loss rate (normalized) as objective 
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all
best

Using 𝜎𝜎𝑦𝑦 from pinhole camera as objective 

Beam loss rate is measured by monitoring the 
beam current change on a 6-second interval 
(no fitting). Noise sigma 0.04 mA/min. Data 
were taken at 500 mA with 5-min top-off.  
 
Initially all 13 skew quads were off.  
At 500 mA, the best solution had a lifetime of 
4.6 hrs. This was better than the LOCO 
correction (5.2 hrs) 

𝜎𝜎𝑦𝑦 noise level at 0.3 micron.  
All 13 skew quads were off initially. 
 
Pinhole camera resolution is limited.  
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• SPEAR3 
- Kicker bump matching 
- Transport line optics  
- Transport line steering 
- GTL steering and optics 
- Injection efficiency w/ sextupoles 

• LCLS  
- Undulator taper optimization 

• BEPC-II luminosity optimization  
- Steering and coupling 
- Interaction point beta 

• ESRF  
- beam lifetime w/ sextupoles 
- Injection steering 
 

Applications of RCDS on real-life problems 

X. Huang, J. Safranek, PRSTAB 18, 084001 (2015)  

H. Ji, et al, Chinese Physics C 2015 Vol. 39 (12) 

J. Wu, K. Fang, X. Huang, 2014-2016 

S. M. Liuzzo, et al, IPAC’16, THPMR015 
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RCDS Top-off kicker bump matching, SPEAR3 

Parameters: Adjusting pulse amplitude, pulse width and timing delay of K1 and K3 
(with K2 fixed) and two skew quads for vertical plane; 8 parameters total.  

Objective: sum of rms(x) and rms(y) of turn-by-turn orbit (for 30~300 turns).  
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First time of getting kicker bump 
for low alpha lattice matched.   

X. Huang 

Presenter
Presentation Notes
RCDS for online optimization, 12/17/2013, at ALS



Online dynamic aperture optimization for SPEAR3 

X. Huang, J. Safranek, PRSTAB 18, 084001 (2015)  

Optimizing injection efficiency with 
reduced kicker bump.  
Knobs: 8 sextupole knobs – each knob is 
a pattern of 10 sextupole families that do 
not change chromaticities.  

DA was increased from 15.1 mm to 
20.6 mm by optimization. 
Momentum aperture (MA) was not 
affected.  
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RCDS beam-based optimization, additional examples 
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 Beam-based optimization of 
SPEAR3 injection efficiency 
with four transport line 
steering magnets (x, x’, y, y’) 
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SELF-SEEDING FEL OPTIMIZATION 
5.5 KeV Self-seeding FEL 

More than doubled 
U17-U32 continuous function: does 
not work well 
Zig-zag taper profile: ~ 1 mJ in 10 fs 

 

Starting 
point 

RCDS 
Optimization 

Knobs: 16 
parameters that 
control the taper 
profile. For U17-U32: 
each K is freely 
optimized with 
bounds. 
Objective: FEL 
photon beam 
intensity.  

Recent result by Juhao Wu, 9/1/2016 
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ESRF optimization of beam lifetime with sextupoles 

S. M. Liuzzo, et al, IPAC’16, THPMR015 

Lifetime for the 16-bunch mode in one month 
before and after optimization. 

Objective: lifetime normalized by current, bunch length, 
and vertical size (average over 13 beam size monitors) 
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Particle Swarm Optimization (PSO) 

 Invented ~1995; first accelerator application ~20141 

 Multiple solutions swarm through parameter space 
 Individual solution velocity evolves from 

• Solution present velocity 
• Best past individual solution 
• Best past swarm solution 

 
 
 
 
 
 

 X. Huang applied to numerical dynamic aperture optimization 

starling swarm 

1X. Pang, L.J. Rybarcyk, NIMA, 2014 

Presenter
Presentation Notes
RCDS = modified Powell’s method.LCLS taper optimization not simulation.  Real data with measurement noise and pulse to pulse variations.  Robust optimizer still finds optimum solution, increasing LCLS pulse power from <2 to >3.5 mJ.
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Coupling correction with PSO – experiment 

X. Huang, K. Tian 

Loss rate at a beam loss monitor with x-scraper at -6 mm. 
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After optimization, for the best solution, at 500 
mA, the lifetime is 3.78 hrs.  
LOCO data showed that coupling ratio is 
0.029%, lowest on SPEAR3.   

18:40 21:40 

The experiment took less than 3000 
evaluations.  

Presenter
Presentation Notes
MOPSO, X. Huang, 9/18/2014, at LER 2014



• The ES method is theoretically elegant.  

The Extremum Seeking (ES)* method 

*A. Scheinker, M. Krstic, IEEE Trans. Automatic Control, 58, 1107 (2013).  
A. Scheinker, M. Krstic, Systems & Control Letters, 63, 25 (2014) 

The optimization parameters (knobs) are 
rotated with various frequencies and 
amplitudes, and subject to modulation by 
the cost function.   

with 
noise 

At the high frequency limit, the behavior approaches that of a gradient descent 
method 

Pros: (1) noise is averaged out; (2) a simple and general framework; (3) can dynamically 
track the optimum.  
Cons: (1) algorithm control parameters are problem specific and need tuning; 
(2) may not be as efficient as other direct search method (e.g. RCDS, simplex); 
(3) Parameter update rate is bounded, but parameters are not.  
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Illustration by A. Scheinker 

Test of the ES method on SPEAR3* 

The problem: injection kicker bump matching 
Knobs: pulse amplitude, width, and delay of K1 and 
K2, and two skew quads – 8 knobs total.  
Objective: residual oscillation of stored beam 

*A. Scheinker, X. Huang, J. Wu, SLAC-PUB-16508 (2016) 

knobs 

objective 
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RCDS result  
X. Huang, et al, NIMA 726 
(2013) 77-83 
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ES – dynamic tracking of the objective 

In this test one parameter (K3 voltage, not an optimization variable) is varied, while 
the ES algorithm serves as a feedback to make compensation.   

If there is no ES feedback 

The ability to maintain performance with a drifting system is 
important. 
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Summary 

o We are making good progress on beam-based nonlinear 
dynamics optimization which could be helpful with the 
commissioning and operation of ultra-low emittance 
storage rings.  There are still some interesting 
challenges. 
 

o Thanks to X. Huang & K. Tian for many of the powerpoint 
pages. 



THAT’S ALL FOLKS! 
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