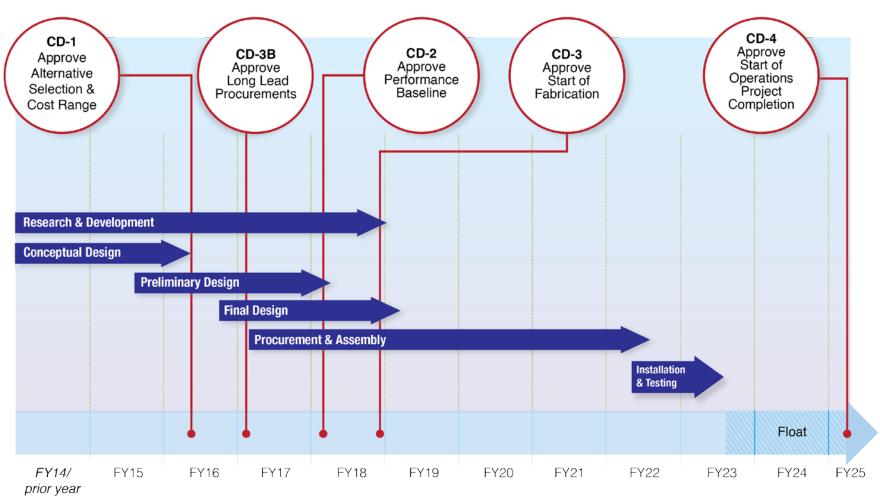


Glenn Decker, for the APS-U Team

APS-U Associate Project Manager - Accelerator Argonne National Laboratory

BNL High-Brightness Synchrotron Light Source Workshop April 26, 2017


Outline

- APS-U Design Overview
- R&D Activities / Results
- Summary

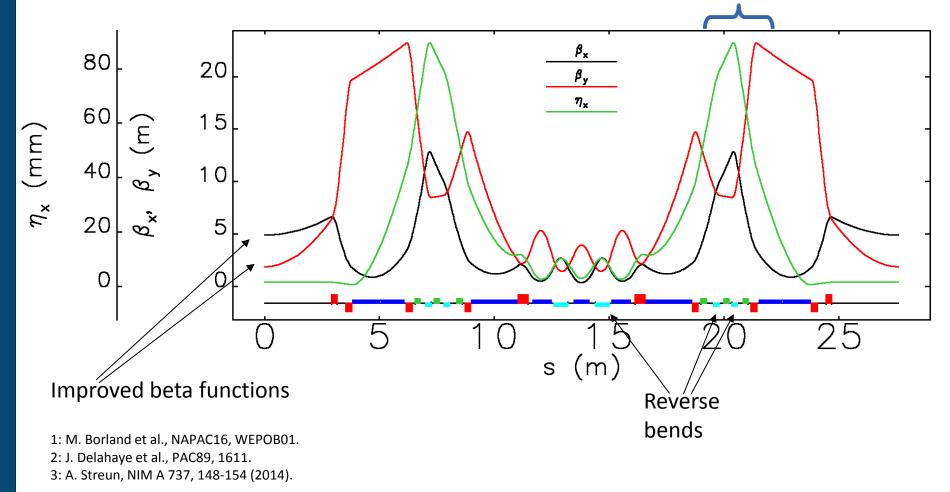
APS Upgrade Project Schedule

This schedule is based on a proposed funding profile

APS-U Storage Ring Lattice

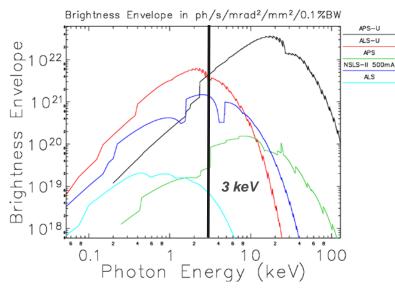
- 67 pm H7BA* lattice presented in the Conceptual Design Report
- 41 pm lattice Chosen for the Preliminary Design
 - Very similar to 67 pm lattice same number of magnets
 - Q4, Q5, Q8 quadrupoles (6 per sector) get displaced horizontally by 2-4 mm to become transverse-gradient weakly-deflecting reverse-bend dipoles
 - 2.8 MeV energy loss / turn vs. 2.27 MeV for 67 pm
 - ID source position, angle constrained to present locations
 - Ring circumference changes slightly Injector timing system impact

*Hybrid 7-Bend Achromat



41-pm Reverse-Bend Lattice¹

Starting from H7BA, replace several quadrupoles with reverse-bend dipole magnets [2,3].


• Decouples dispersion and beta functions.

Larger dispersion Larger beta functions

Brightness and Coherent Flux

Brightness vs. x-ray energy at top beamlines among DOE-BES synchrotron light sources.

APS-U Coherent Flux Envelope (ph/s/0.1%BW) **Coherent Flux** ALS-U 015 APS NSLS-II 500mA 014 ALS 013 012 10¹ 010 6 8 6 8 2 4 6 8 2 6 8 100 0.1 10 1 Photon Energy (keV)

Coherent Flux vs. x-ray energy at top beamlines among DOE-BES synchrotron light sources.

APS-U will be the brightest storage ring-based light source in the U.S. for energies greater than ~3 keV

High-Level Lattice Parameters

	$67 \mathrm{pm}\text{-}\mathrm{V6}$	42 pm-V5r1	
Betatron motion			
$ u_x$	95.125	95.101	
$ u_y$	36.122	36.101	
$\xi_{x,nat}$	-138.580	-130.835	
$\xi_{y,nat}$	-108.477	-122.013	
Lattice functions			
Maximum β_x	12.9	13.0	\mathbf{m}
Maximum β_y	18.9	22.9	m
Maximum η_x	0.074	0.090	m
Average β_x	4.2	3.7	m
Average β_y	7.8	9.5	m
Average η_x	0.030	0.033	m
Radiation-integral-relate	d quantities	at 6 GeV	
Natural emittance	66.9	42.3	\mathbf{pm}
Energy spread	0.096	0.127	%
Horizontal damping time	12.1	7.3	\mathbf{ms}
Vertical damping time	19.5	16.1	\mathbf{ms}
Longitudinal damping time	14.1	20.1	\mathbf{ms}
Energy loss per turn	2.27	2.74	MeV
ID Straight Sections			
β_x	7.0	4.9	m
η_x	1.11	0.57	$\mathbf{m}\mathbf{m}$
β_y	2.4	1.9	m
$\epsilon_{x,eff}$	67.0	42.3	pm
Miscellaneous parameter	S		1
Momentum compaction	$5.66 imes10^{-5}$	$3.96 imes 10^{-5}$	
Damping partition J_x	1.61	2.20	
Damping partition J_y	1.00	1.00	
Damping partition J_{δ}	1.39	0.80	

Table 1: Comparison to prior MBA versions

Beam Size Formula (horz.)

$$\sigma_x^2 = \varepsilon_x \beta_x + \eta_x^2 \sigma_\delta^2$$

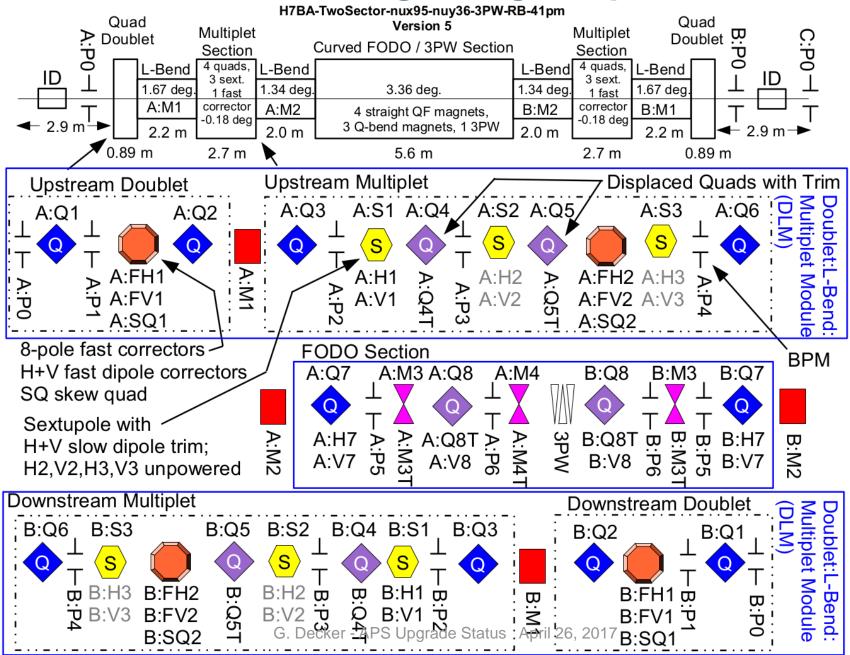
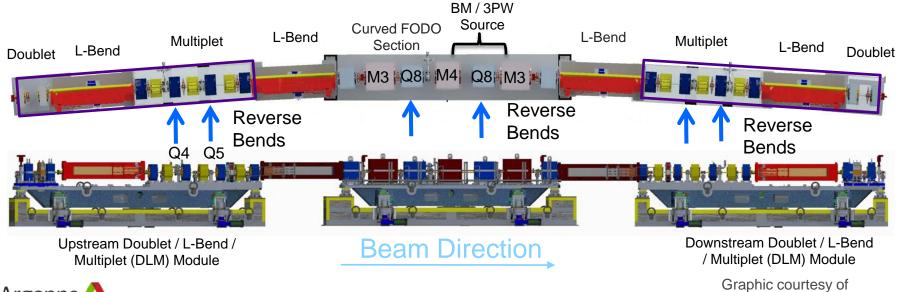

Note: vertical beam size adjustable with skew quadrupoles

Table courtesy of Y. Sun APS/ASD


G. Decker - APS Upgrade Status April 26, 2017

MBA Storage Ring Scope

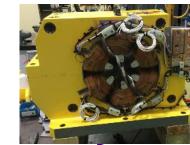
APS-U Mechanical System Overview

- Storage ring consists of 40 Sectors. Each arc section identical. Length 27.6 m
- Sector arcs consist of nine modules, mounted upon three large support structures:
 - Two quadrupole doublets: Each with two quadrupoles and a fast corrector
 - Four longitudinal-gradient dipoles (L-bends)
 - Two multiplets: Each with 2 quadrupoles, 3 sextupoles, 2 reverse bends, and a fast corrector
 - Curved FODO section: 2 quadrupoles, 3 Q-bends, 2 reverse bends, and space for a 3PW source
- Vacuum systems integrated with magnets, supports, insertion devices, front ends.
- 5 Straight sections in Zone F (APS sectors 36 40)
 - Injection/extraction hardware, RF accelerating cavities and bunch lengthening system
- Assembly and installation readiness:
 - Each module pre-assembled, components aligned, full system tests prior to installation

G. Decker - APS Upgrade Status April 26, 2017

H. Cease APS-U

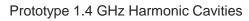
9



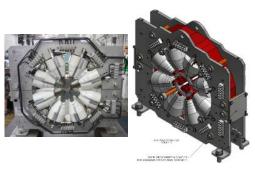
Accelerator Mechanical Prototypes

Demonstration Modular Multiplet (DMM)

- Prototype quadrupoles (4), Prototype sextupole (1)
- Prototype plinth, support structures to study alignment, vibration
- Magnetic measurements, stretched / vibrating wire alignment techniques.
- Other magnets
 - Eight-pole corrector (8PC)
 - Three-magnet FODO(3MF)
- Vacuum system full-sector mockup
 - BPM prototypes
 - Flange testing
- Harmonic Cavity Components
 - Cavities, Couplers, HOM damper



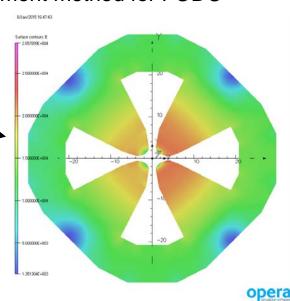
DMM Sextupole

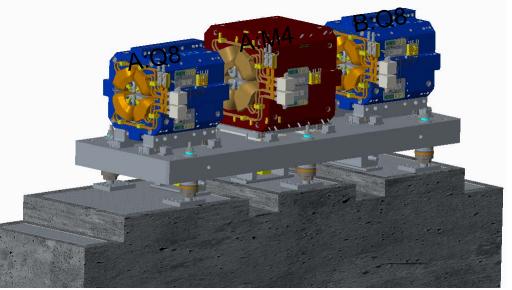


Prototype Aluminum Vacuum Chamber

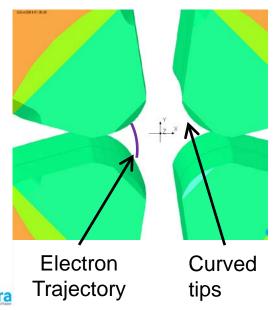
DMM

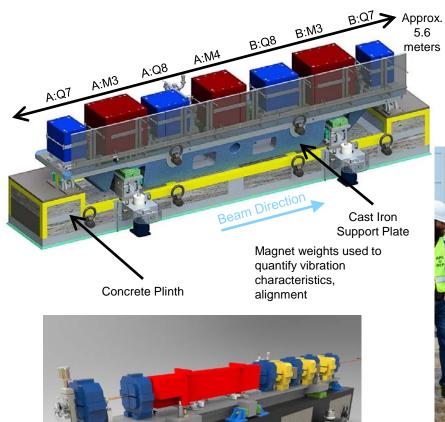
First 8PC prototype complete; at BNL


Magnet R&D: 3-Magnet FODO (3MF)


- Components
 - Two Q8 magnets
 - New 8-Piece-Yoke design
 - VP pole tips
 - One M4 magnet
 - Curved VP pole tips
- Goal
 - Test 8-Piece-Yoke design*
 - Test magnetic measurement method for FODO
 - Test alignment scheme

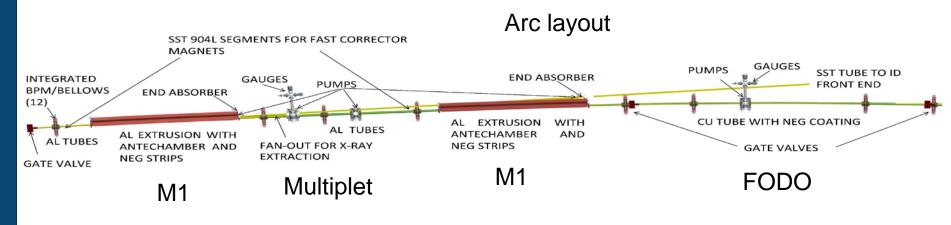
M4 Transverse-Gradient Dipole


* 8-piece Q8 magnet delivered, measured, and meets requirements



Courtesy J. Downey APS-AES

Support Structure Design

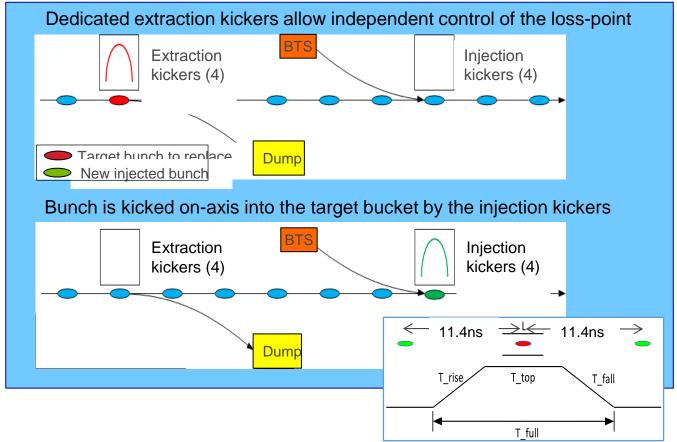

FODO Plinth / Support Structure Prototype

Doublet – L-bend – Multiplet Module (DLM)

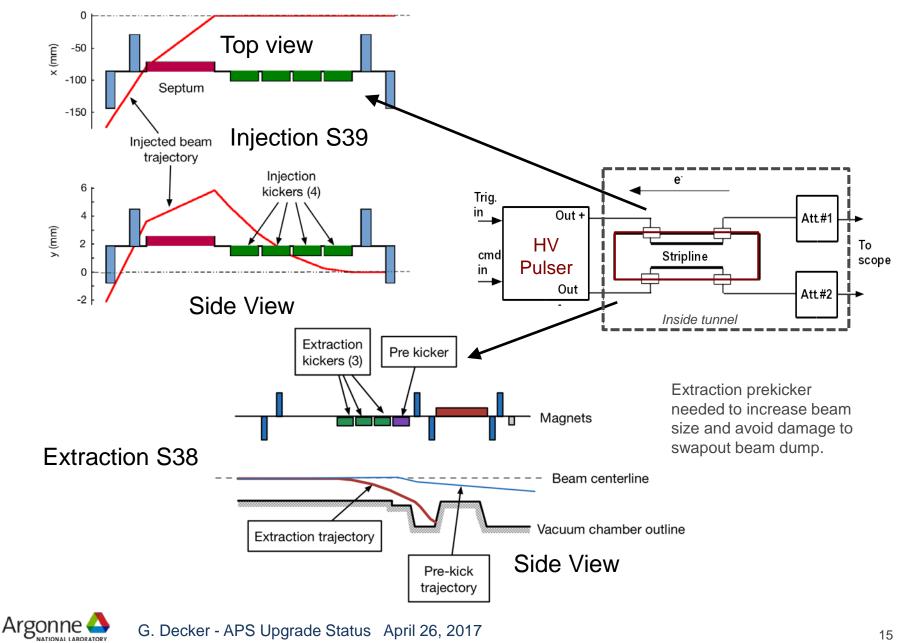
Vacuum System Design

R&D doublet / multiplet R&D FODO chambers R&D L-bend chamber chambers received received.

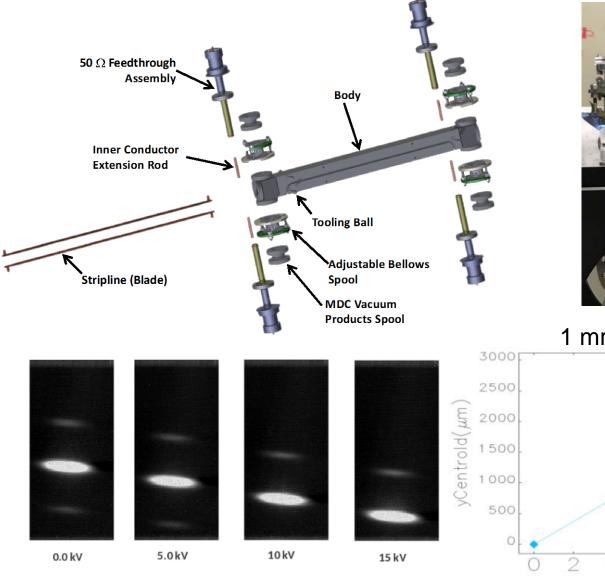
on order, NEG heaters extrusions received and bent. Demo welds made. received.

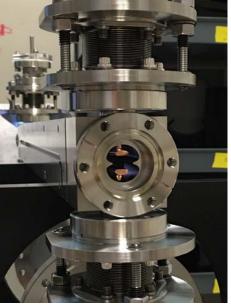

BPM/bellows R&D mockups

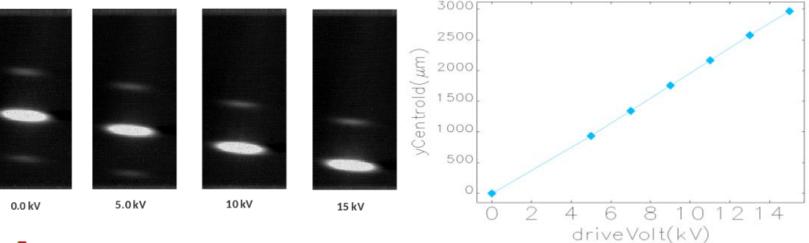
- Heat loads in FODO section for 41 pm lattice increase at 10% level vs. 67 pm
- Chamber inner diameter is 22 mm


Swap-out Injection

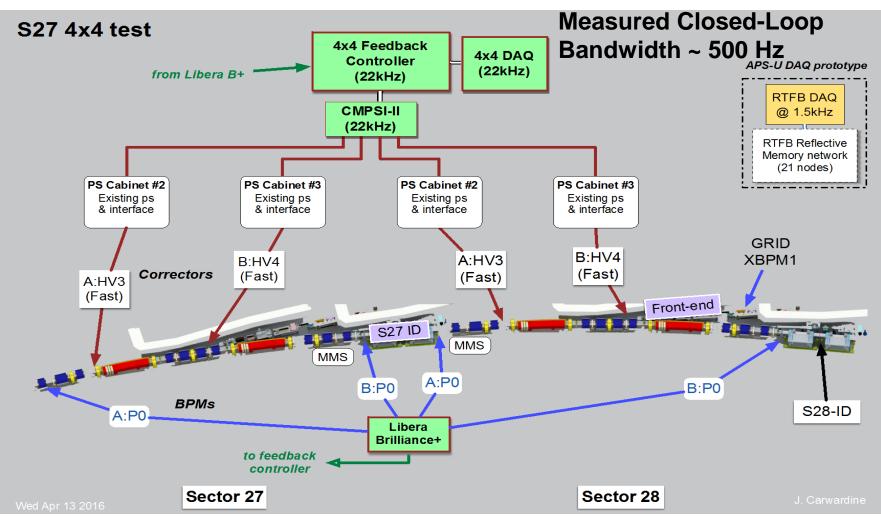
- Aggressive optics precludes conventional off-axis accumulation.
- On-axis swap-out injection scheme is planned:
 - Complete replacement of individual bunches
 - Fast (< 20 ns duration), high-voltage (15 kV+) kickers



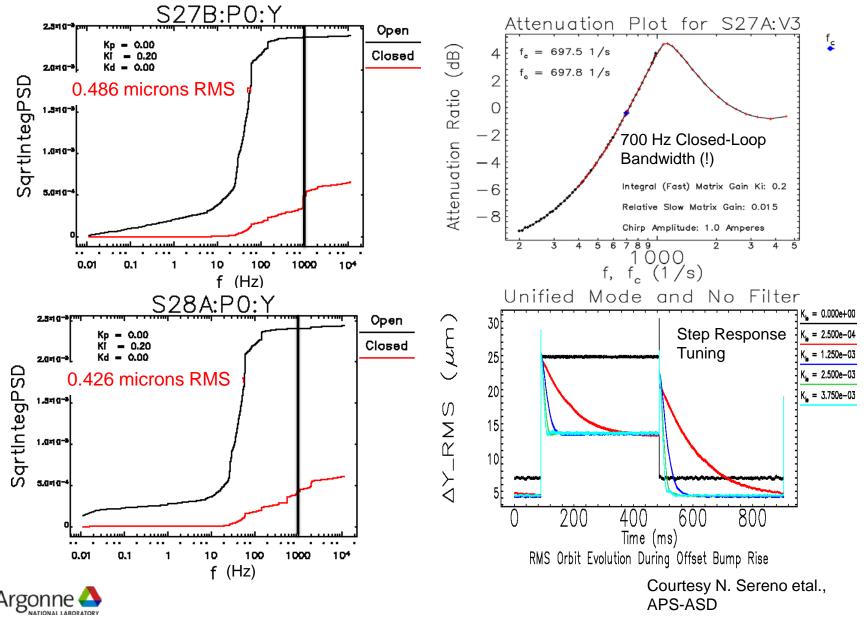

Injection / Extraction Systems


G. Decker - APS Upgrade Status April 26, 2017

Stripline Kicker Prototype Beam Test


1 mrad / meter confirmed

G. Decker - APS Upgrade Status April 26, 2017


APS-U 4x4 Prototype Fast Orbit Feedback Test - April, 2016 - First demonstration of Fast Orbit Feedback at 22.6 kHz

Integrated Beam Stability tests (16 BPMs, 8 new fast power supplies, two feedback controllers) now being tested in sectors 27, 28.

Unified / Integrated Vertical Orbit Feedback RMS Motion 0.01 – 1000 Hz; (4x4 Fast + 4x16 Slow)

Preliminary Insertion Device Selection

Device	Preliminary Selection	Comments	
HPM Planar	32 + (7)	Nominal 2.8cm period. Additional new periods are 2.5cm, 2.1cm and 1.35cm Will reuse all 2.7cm and 2.3cm period devices	
HPM Revolver	8 + (1)	Only two headed revolvers (Reuse one existing revolver)	
SCU	8 + (1) 2 devices of 1.8m each in one cryostat - 2 locations 2 devices of 1.2 to 1.5 m with canting magnets - 2 locations 1 existing device - located co-linear with HPM Planned periods are 1.65cm and 1.85cm		
EMVPU	(1) + (1)	Reuse both IEX and CPU	
		2 devices in one cryostat for polarization switching studies for hard x-rays	

Nominal length of PM devices are 2.4m (2.1 m in canted configurations) and SCU are 1.8m

(1.2-1.5 m in canted configurations)

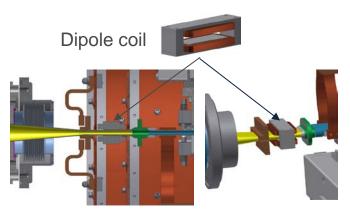
Hybrid Permanent Magnet (HPM) Planar is for one set of magnets

HPM Revolver is two sets of magnets and a revolver mechanism

Both HPM Planar and Revolver will reuse the existing gap separation mechanisms

Device count in () is existing and may need minor modifications

Beamlines requesting dual in-line undulators (2 x 2.4 m long) will be provided with phase tuning



Super Conducting Undulator

- New cryostat is modular and length can be expanded to 4.5m
- Single cryostat to accommodate multiple devices in same straight section
- For devices in tandem a phase shifter, corrector and a BPM in the middle is planned
- For canted configuration ID length will be restricted to maximum of 1.5m
 - Need to have canting magnets both upstream, downstream and middle

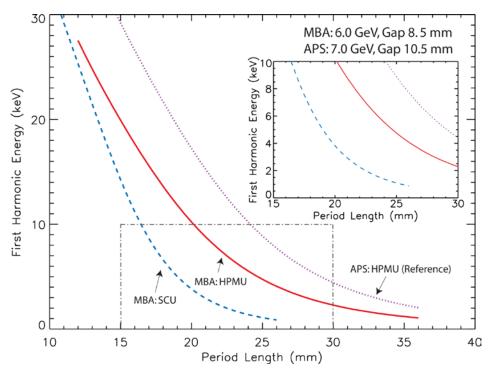
Corrector and BPM in the middle

Vacuum Chamber Transition

Summary

- The APS-U 41-pm reverse-bend lattice promises orders of magnitude brightness improvement.
- Preliminary Design Report is a key FY17 deliverable.
- The APS-U R&D program is yielding excellent results.
 - Magnet design validation
 - Demonstration of alignment
 - High-speed kicker technology
 - Beam stability and control
 - Superconducting undulator development
- The future looks very bright.

Backup Material


.

APS Upgrade User Needs

- Maximize brightness and flux
- Balance between tuning range and maximizing the performance at specific photon energies
- Balance between power, power density with flux through an aperture
- Make period length as short as possible for maximum performance
- Typically shorter periods than today will be required.
- For the HPMUs most commonly requested periods are 2.1 – 2.8 cm (SCUs periods 1.5 – 1.9 cm)

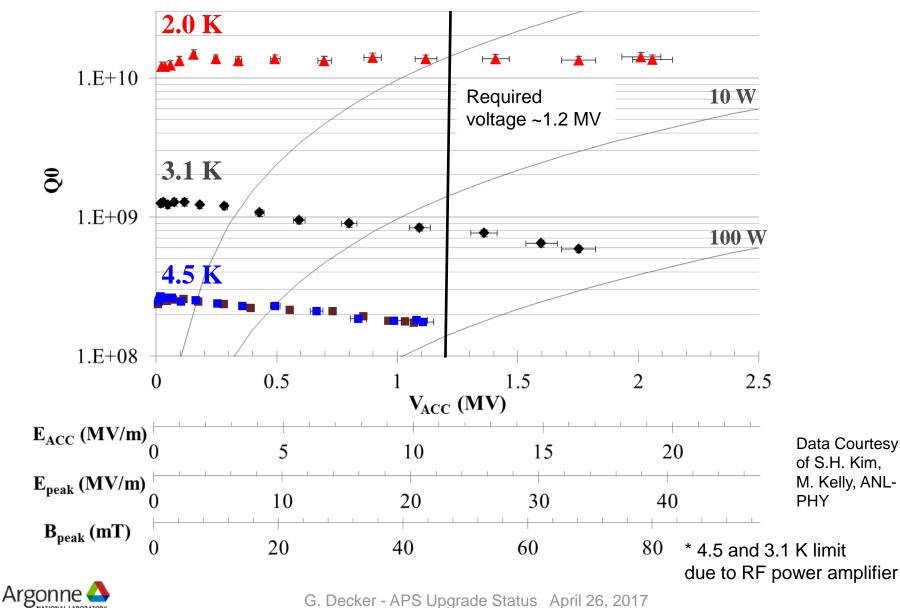
APS UA (3.3 cm): 3.0 keV (10.5 mm gap)

APS-U HPMU 2.7 cm: 3.5 keV (8.5 mm gap)

First harmonic energy vs period length for HPMUs and SCUs for 6 GeV and 8.5 mm magnetic gap

Superconducting 1.4 GHz Higher-Harmonic Cavity (HHC) For Bunch Lengthening

2 MV achieved at 2 degrees K, ANL-PHY, 11/2016

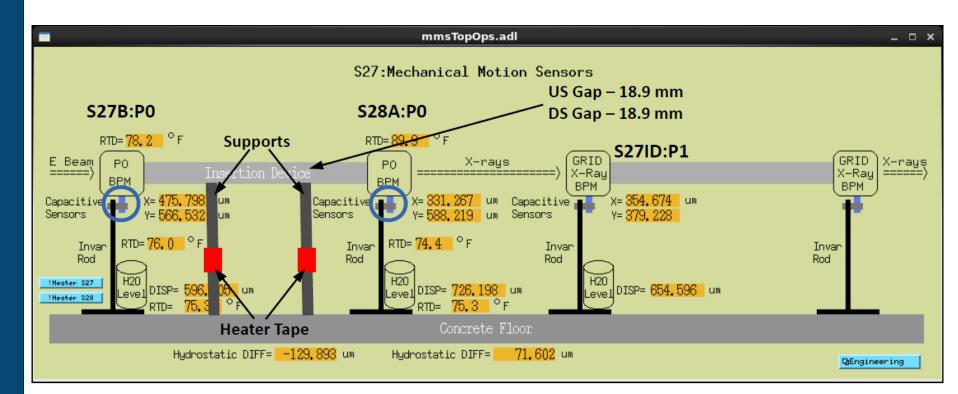

Higher-order mode damper

Argonne

Single Cell 1.4 GHz Superconducting Harmonic Cavity

Fundamental Power Couplers

Cold Tests of Superconducting Higher-Harmonic Cavity (HHC) November, 2016



G. Decker - APS Upgrade Status April 26, 2017

NATIONAL LABORATOR

Long-Term Beam Stability Tests

- Use of capacitive proximity sensors and hydrostatic level system (HLS)

Long-term beam stability studies have demonstrated 1.4 microns rms stability over several days after compensating for ground motion (HLS) and thermally-induced mechanical motion of beam position monitors.

